English | 简体中文
DeepKE is a knowledge extraction toolkit supporting low-resource and document-level scenarios for entity, relation and attribute extraction. We provide comprehensive documents, Google Colab tutorials, and online demo for beginners.
- What's New
- Prediction Demo
- Model Framework
- Quick Start
- Notebook Tutorial
- Tips
- To do
- Citation
- Developers
- We have released a paper DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population
- We have added
dockerfile
to create the enviroment automatically.
- The demo of DeepKE, supporting real-time extration without deploying and training, has been released.
- The documentation of DeepKE, containing the details of DeepKE such as source codes and datasets, has been released.
pip install deepke
- The codes of deepke-v2.0 have been released.
- The codes of deepke-v1.0 have been released.
- The project DeepKE startup and codes of deepke-v0.1 have been released.
There is a demonstration of prediction.
- DeepKE contains a unified framework for named entity recognition, relation extraction and attribute extraction, the three knowledge extraction functions.
- Each task can be implemented in different scenarios. For example, we can achieve relation extraction in standard, low-resource (few-shot) and document-level settings.
- Each application scenario comprises of three components: Data including Tokenizer, Preprocessor and Loader, Model including Module, Encoder and Forwarder, Core including Training, Evaluation and Prediction.
DeepKE supports pip install deepke
.
Take the fully supervised relation extraction for example.
Step1 Download the basic code
git clone https://github.com/zjunlp/DeepKE.git
Step2 Create a virtual environment using Anaconda
and enter it.
We also provide dockerfile source code, which is located in the docker
folder, to help users create their own mirrors.
conda create -n deepke python=3.8
conda activate deepke
-
Install DeepKE with source code
python setup.py install python setup.py develop
-
Install DeepKE with
pip
pip install deepke
Step3 Enter the task directory
cd DeepKE/example/re/standard
Step4 Download the dataset
wget 120.27.214.45/Data/re/standard/data.tar.gz
tar -xzvf data.tar.gz
Step5 Training (Parameters for training can be changed in the conf
folder)
We support visual parameter tuning by using wandb.
python run.py
Step6 Prediction (Parameters for prediction can be changed in the conf
folder)
Modify the path of the trained model in predict.yaml
.
python predict.py
python == 3.8
- torch == 1.5
- hydra-core == 1.0.6
- tensorboard == 2.4.1
- matplotlib == 3.4.1
- transformers == 3.4.0
- jieba == 0.42.1
- scikit-learn == 0.24.1
- pytorch-transformers == 1.2.0
- seqeval == 1.2.2
- tqdm == 4.60.0
- opt-einsum==3.3.0
- wandb==0.12.7
- ujson
-
Named entity recognition seeks to locate and classify named entities mentioned in unstructured text into pre-defined categories such as person names, organizations, locations, organizations, etc.
-
The data is stored in
.txt
files. Some instances as following:Sentence Person Location Organization 本报北京9月4日讯记者杨涌报道:部分省区人民日报宣传发行工作座谈会9月3日在4日在京举行。 杨涌 北京 人民日报 《红楼梦》是**电视台和**电视剧制作中心根据**古典文学名著《红楼梦》摄制于1987年的一部古装连续剧,由王扶林导演,周汝昌、王蒙、周岭等多位红学家参与制作。 王扶林,周汝昌,王蒙,周岭 ** **电视台,**电视剧制作中心 秦始皇兵马俑位于陕西省西安市,1961年被国务院公布为第一批全国重点文物保护单位,是世界八大奇迹之一。 秦始皇 陕西省,西安市 国务院 -
Read the detailed process in specific README
-
Step1 Enter
DeepKE/example/ner/standard
. Download the dataset.wget 120.27.214.45/Data/ner/standard/data.tar.gz tar -xzvf data.tar.gz
Step2 Training
The dataset and parameters can be customized in the
data
folder andconf
folder respectively.python run.py
Step3 Prediction
python predict.py
-
Step1 Enter
DeepKE/example/ner/few-shot
. Download the dataset.wget 120.27.214.45/Data/ner/few_shot/data.tar.gz tar -xzvf data.tar.gz
Step2 Training in the low-resouce setting
The directory where the model is loaded and saved and the configuration parameters can be cusomized in the
conf
folder.python run.py +train=few_shot
Users can modify
load_path
inconf/train/few_shot.yaml
to use existing loaded model.Step3 Add
- predict
toconf/config.yaml
, modifyloda_path
as the model path andwrite_path
as the path where the predicted results are saved inconf/predict.yaml
, and then runpython predict.py
python predict.py
-
-
Relationship extraction is the task of extracting semantic relations between entities from a unstructured text.
-
The data is stored in
.csv
files. Some instances as following:Sentence Relation Head Head_offset Tail Tail_offset 《岳父也是爹》是王军执导的电视剧,由马恩然、范明主演。 导演 岳父也是爹 1 王军 8 《九玄珠》是在纵横中文网连载的一部小说,作者是龙马。 连载网站 九玄珠 1 纵横中文网 7 提起杭州的美景,西湖总是第一个映入脑海的词语。 所在城市 西湖 8 杭州 2 -
Read the detailed process in specific README
-
Step1 Enter the
DeepKE/example/re/standard
folder. Download the dataset.wget 120.27.214.45/Data/re/standard/data.tar.gz tar -xzvf data.tar.gz
Step2 Training
The dataset and parameters can be customized in the
data
folder andconf
folder respectively.python run.py
Step3 Prediction
python predict.py
-
Step1 Enter
DeepKE/example/re/few-shot
. Download the dataset.wget 120.27.214.45/Data/re/few_shot/data.tar.gz tar -xzvf data.tar.gz
Step 2 Training
- The dataset and parameters can be customized in the
data
folder andconf
folder respectively. - Start with the model trained last time: modify
train_from_saved_model
inconf/train.yaml
as the path where the model trained last time was saved. And the path saving logs generated in training can be customized bylog_dir
.
python run.py
Step3 Prediction
python predict.py
- The dataset and parameters can be customized in the
-
Step1 Enter
DeepKE/example/re/document
. Download the dataset.wget 120.27.214.45/Data/re/document/data.tar.gz tar -xzvf data.tar.gz
Step2 Training
- The dataset and parameters can be customized in the
data
folder andconf
folder respectively. - Start with the model trained last time: modify
train_from_saved_model
inconf/train.yaml
as the path where the model trained last time was saved. And the path saving logs generated in training can be customized bylog_dir
.
python run.py
Step3 Prediction
python predict.py
- The dataset and parameters can be customized in the
-
-
Attribute extraction is to extract attributes for entities in a unstructed text.
-
The data is stored in
.csv
files. Some instances as following:Sentence Att Ent Ent_offset Val Val_offset 张冬梅,女,汉族,1968年2月生,河南淇县人 民族 张冬梅 0 汉族 6 诸葛亮,字孔明,三国时期杰出的军事家、文学家、发明家。 朝代 诸葛亮 0 三国时期 8 2014年10月1日许鞍华执导的电影《黄金时代》上映 上映时间 黄金时代 19 2014年10月1日 0 -
Read the detailed process in specific README
-
Step1 Enter the
DeepKE/example/ae/standard
folder. Download the dataset.wget 120.27.214.45/Data/ae/standard/data.tar.gz tar -xzvf data.tar.gz
Step2 Training
The dataset and parameters can be customized in the
data
folder andconf
folder respectively.python run.py
Step3 Prediction
python predict.py
-
This toolkit provides many Jupyter Notebook
and Google Colab
tutorials. Users can study DeepKE with them.
-
Standard Setting
-
Low-resource
-
Document-level
- Using nearest mirror, like THU in China, will speed up the installation of Anaconda.
- Using nearest mirror, like aliyun in China, will speed up
pip install XXX
. - When encountering
ModuleNotFoundError: No module named 'past'
,runpip install future
. - It's slow to install the pretrained language models online. Recommend download pretrained models before use and save them in the
pretrained
folder. ReadREADME.md
in every task directory to check the specific requirement for saving pretrained models. - The old version of DeepKE is in the deepke-v1.0 branch. Users can change the branch to use the old version. The old version has been totally transfered to the standard relation extraction (example/re/standard).
- It's recommended to install DeepKE with source codes. Because user may meet some problems in Windows system with 'pip'.
- More related low-resource knowledge extraction works can be found in Knowledge Extraction in Low-Resource Scenarios: Survey and Perspective.
In next version, we plan to add multi-modality knowledge extraction to the toolkit.
Meanwhile, we will offer long-term maintenance to fix bugs, solve issues and meet new requests. So if you have any problems, please put issues to us.
Please cite our paper if you use DeepKE in your work
@article{zhang2022deepke,
title={DeepKE: A Deep Learning Based Knowledge Extraction Toolkit for Knowledge Base Population},
author={Zhang, Ningyu and Xu, Xin and Tao, Liankuan and Yu, Haiyang and Ye, Hongbin and Xie, Xin and Chen, Xiang and Li, Zhoubo and Li, Lei and Liang, Xiaozhuan and others},
journal={arXiv preprint arXiv:2201.03335},
year={2022}
}
Zhejiang University: Ningyu Zhang, Liankuan Tao, Xin Xu, Haiyang Yu, Hongbin Ye, Shuofei Qiao, Xin Xie, Xiang Chen, Zhoubo Li, Lei Li, Xiaozhuan Liang, Yunzhi Yao, Shumin Deng, Wen Zhang, Guozhou Zheng, Huajun Chen
Alibaba Group: Feiyu Xiong, Hui Chen, Qiang Chen
DAMO Academy: Zhenru Zhang, Chuanqi Tan, Fei Huang