non-parametric-statistics
There are 29 repositories under non-parametric-statistics topic.
IndrajeetPatil/ggstatsplot
Enhancing {ggplot2} plots with statistical analysis 📊📣
TARGENE/TMLE.jl
A pure Julia implementation of the Targeted Minimum Loss-based Estimation
nt-williams/simul
:package: Simultaneous Confidence Bands Based on the Efficient Influence Function and Multiplier Bootstrap :books: :crystal_ball: :satellite:
S-razmi/Hands-on
Hands-on Instructions on Different courses
Mamba413/Nonparametric-Statistical-Inference-via-Metric-Distribution-Function-in-Metric-Spaces
Reproducible materials for Nonparametric Statistical Inference via Metric Distribution Function in Metric Spaces (JASA, 2023+)
sghosh89/BIVAN
This repo is for copula based analysis on bivariate as well as multivariate data sets in ecology and related fields. For details and citation we refer to this publication: Ghosh et al., Advances in Ecological Research, vol 62,pp 409, 2020
songlab-cal/flinty
A Simple and Flexible Test of Sample Exchangeability with Applications to Statistical Genomics
tnathu-ai/Hypothesis-Testing-Crosfit-Case-Study
Hypothesis Testing CrossFit Game 2015
andreehrlich/individualized-treatment-survival
MSc Thesis: Non-Parametric Estimation of Optimal Individualized Treatment Rules for Survival Data
Goodfeelings/spring-2024-comp-intensive-stats-projects-02
Computer Intensive Stats - Project 02
JamesHotniel78/Median-Test-in-R-Software
Median Test in R Software
kapshaul/CT-medical-imaging
The Expectation Maximization (EM) algorithm is used to reduce Poisson noise in CT images. The repository provides derivations and evaluations with the Cramer-Rao Lower Bound (CRLB).
MalekYaich/Density-estimation-
This project offers an R code implementation for estimating the density function using the kernel method. It explores different values of the parameters h and n to perform these estimations.
rmehta1987/CoZINB
Correlated Zero Inflated Negative Binomial Process
AbrahamHussein/STAT-523
Developed a function in R to compute the Cramér–von Mises test statistic(s) in R as no packages were readily available.
Arekflo2002/MetodyNieparametryczneStatystyka_Rozwiazania
So this is my final project for non-parametric methods in statistics. I work in Jupyter Notebook and extract solutions to HTML. I mainly test power of the selected tests(chi square, kolmogorov,etc.) depending on different variables(like deegres of freedom of the distribution or number of observations).
davidblakneymoore/The-Shared-Area-Under-Probability-Distribution-Curves-Test
The shared area under probability distribution curves test is a non-parametric alternative to the analysis of variance. It makes no assumptions about the data and it is not based on ranks, so information about absolute distances between data points is not lost.
dorisyan1122/Non-Paramatric-Testing
Program Evaluation with Non-Parametric Statistics and Hypothesis Testing
ebjaime/European-Green-Deal-Analysis
An analysis of the European Renewable Transition.
EdaYaren/NonParametric
Parametrik olmayan istatistiksel yöntemler dersinin ödevi
hammerdirt-analyst/landuse
Using topographic attributes to identify zones of accumulation. Based on count data using EU protocol. Submitted for peer review.
hinc-b/UniProject_NonParametricModel
Project scope: Prediction if the bank's client will or will not leave the bank.
kasia-kobalczyk/mystatlearn
Accessible implementation of statistical learning algorithms, non-parametric and high-dimensional methods.
Marklong7/FeatureAlignment
This is an R package for feature alignment issues in vertical federated learning
Shalini-cmd/Statistics-Exploration-Reasoning
All my R code used for statistical analyses - Hypothesis Testing, t-tests, etc.
BioStatBioComp/Hands-on-Biostatistics-Workshop-2021
Materials of the Hands-on Biostatistics 2021 workshop
kamrul69/Non-parametric-statistics-tests-Beginner-to-Advanced
1. 1-sample sign test 2. 1-sample Wilcoxon test. 3. Wilcoxon test for paired data. 4. Mann-Whitney test. 5. Mood's median test. 6. Kruskal Wallis test. 7. Friedman test.
sebasr0/Estadistica-No-Parametrica-Regresion-Tests-EstadOrdenados
Análisis del Taller de EstadÃstica No Paramétrica. Incluye modelos robustos y no paramétricos, estimación con KDE, pruebas estadÃsticas (Mann-Whitney U), y detección de outliers. Comparación de regresión RLM, RANSAC, y Kernel. Código para análisis, visualizaciones y resultados. - Modelos robustos y no paramétricos - KDE y análisis de distribución