Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption
pip install pytorch-benchmark
import torch
from torchvision.models import efficientnet_b0
from pytorch_benchmark import benchmark
model = efficientnet_b0()
sample = torch.randn(8, 3, 224, 224) # (B, C, H, W)
results = benchmark(model, sample, num_runs=100)
Macbook Pro (16-inch, 2019), 2.6 GHz 6-Core Intel Core i7
device: cpu
flops: 401669732
machine_info:
cpu:
architecture: x86_64
cores:
physical: 6
total: 12
frequency: 2.60 GHz
model: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
gpus: null
memory:
available: 5.86 GB
total: 16.00 GB
used: 7.29 GB
system:
node: d40049
release: 21.2.0
system: Darwin
params: 5288548
timing:
batch_size_1:
on_device_inference:
human_readable:
batch_latency: 74.439 ms +/- 6.459 ms [64.604 ms, 96.681 ms]
batches_per_second: 13.53 +/- 1.09 [10.34, 15.48]
metrics:
batches_per_second_max: 15.478907181264278
batches_per_second_mean: 13.528026359855625
batches_per_second_min: 10.343281300091244
batches_per_second_std: 1.0922382209314958
seconds_per_batch_max: 0.09668111801147461
seconds_per_batch_mean: 0.07443853378295899
seconds_per_batch_min: 0.06460404396057129
seconds_per_batch_std: 0.006458734193132054
batch_size_8:
on_device_inference:
human_readable:
batch_latency: 509.410 ms +/- 30.031 ms [405.296 ms, 621.773 ms]
batches_per_second: 1.97 +/- 0.11 [1.61, 2.47]
metrics:
batches_per_second_max: 2.4673319862230025
batches_per_second_mean: 1.9696935126370148
batches_per_second_min: 1.6083039834656554
batches_per_second_std: 0.11341204895590185
seconds_per_batch_max: 0.6217730045318604
seconds_per_batch_mean: 0.509410228729248
seconds_per_batch_min: 0.40529608726501465
seconds_per_batch_std: 0.030031445467788704
Server with NVIDIA GeForce RTX 2080 and Intel Xeon 2.10GHz CPU
device: cuda
flops: 401669732
machine_info:
cpu:
architecture: x86_64
cores:
physical: 16
total: 32
frequency: 3.00 GHz
model: Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
gpus:
- memory: 8192.0 MB
name: NVIDIA GeForce RTX 2080
- memory: 8192.0 MB
name: NVIDIA GeForce RTX 2080
- memory: 8192.0 MB
name: NVIDIA GeForce RTX 2080
- memory: 8192.0 MB
name: NVIDIA GeForce RTX 2080
memory:
available: 119.98 GB
total: 125.78 GB
used: 4.78 GB
system:
node: monster
release: 4.15.0-167-generic
system: Linux
max_inference_memory: 736250368
params: 5288548
post_inference_memory: 21402112
pre_inference_memory: 21402112
timing:
batch_size_1:
cpu_to_gpu:
human_readable:
batch_latency: "144.815 \xB5s +/- 16.103 \xB5s [136.614 \xB5s, 272.751 \xB5\
s]"
batches_per_second: 6.96 K +/- 535.06 [3.67 K, 7.32 K]
metrics:
batches_per_second_max: 7319.902268760908
batches_per_second_mean: 6962.865857677197
batches_per_second_min: 3666.3496503496503
batches_per_second_std: 535.0581873859935
seconds_per_batch_max: 0.0002727508544921875
seconds_per_batch_mean: 0.00014481544494628906
seconds_per_batch_min: 0.0001366138458251953
seconds_per_batch_std: 1.6102982159292097e-05
gpu_to_cpu:
human_readable:
batch_latency: "106.168 \xB5s +/- 17.829 \xB5s [53.167 \xB5s, 248.909 \xB5\
s]"
batches_per_second: 9.64 K +/- 1.60 K [4.02 K, 18.81 K]
metrics:
batches_per_second_max: 18808.538116591928
batches_per_second_mean: 9639.942102368092
batches_per_second_min: 4017.532567049808
batches_per_second_std: 1595.7983033708472
seconds_per_batch_max: 0.00024890899658203125
seconds_per_batch_mean: 0.00010616779327392578
seconds_per_batch_min: 5.316734313964844e-05
seconds_per_batch_std: 1.7829135190772566e-05
on_device_inference:
human_readable:
batch_latency: "15.567 ms +/- 546.154 \xB5s [15.311 ms, 19.261 ms]"
batches_per_second: 64.31 +/- 1.96 [51.92, 65.31]
metrics:
batches_per_second_max: 65.31149174711928
batches_per_second_mean: 64.30692850265713
batches_per_second_min: 51.918698784442846
batches_per_second_std: 1.9599322351815833
seconds_per_batch_max: 0.019260883331298828
seconds_per_batch_mean: 0.015567030906677246
seconds_per_batch_min: 0.015311241149902344
seconds_per_batch_std: 0.0005461537255227954
total:
human_readable:
batch_latency: "15.818 ms +/- 549.873 \xB5s [15.561 ms, 19.461 ms]"
batches_per_second: 63.29 +/- 1.92 [51.38, 64.26]
metrics:
batches_per_second_max: 64.26476266356143
batches_per_second_mean: 63.28565696640637
batches_per_second_min: 51.38378232692614
batches_per_second_std: 1.9198343850767468
seconds_per_batch_max: 0.019461393356323242
seconds_per_batch_mean: 0.01581801414489746
seconds_per_batch_min: 0.015560626983642578
seconds_per_batch_std: 0.0005498731526138171
batch_size_8:
cpu_to_gpu:
human_readable:
batch_latency: "805.674 \xB5s +/- 157.254 \xB5s [773.191 \xB5s, 2.303 ms]"
batches_per_second: 1.26 K +/- 97.51 [434.24, 1.29 K]
metrics:
batches_per_second_max: 1293.3407338883749
batches_per_second_mean: 1259.5653105357776
batches_per_second_min: 434.23791282741485
batches_per_second_std: 97.51424036939879
seconds_per_batch_max: 0.002302885055541992
seconds_per_batch_mean: 0.000805673599243164
seconds_per_batch_min: 0.0007731914520263672
seconds_per_batch_std: 0.0001572538140613121
gpu_to_cpu:
human_readable:
batch_latency: "104.215 \xB5s +/- 12.658 \xB5s [59.605 \xB5s, 128.031 \xB5\
s]"
batches_per_second: 9.81 K +/- 1.76 K [7.81 K, 16.78 K]
metrics:
batches_per_second_max: 16777.216
batches_per_second_mean: 9806.840626578907
batches_per_second_min: 7810.621973929236
batches_per_second_std: 1761.6008872740726
seconds_per_batch_max: 0.00012803077697753906
seconds_per_batch_mean: 0.00010421514511108399
seconds_per_batch_min: 5.9604644775390625e-05
seconds_per_batch_std: 1.2658293070174213e-05
on_device_inference:
human_readable:
batch_latency: "16.623 ms +/- 759.017 \xB5s [16.301 ms, 22.584 ms]"
batches_per_second: 60.26 +/- 2.22 [44.28, 61.35]
metrics:
batches_per_second_max: 61.346243290283894
batches_per_second_mean: 60.25881046175457
batches_per_second_min: 44.27827629162004
batches_per_second_std: 2.2193085956672296
seconds_per_batch_max: 0.02258443832397461
seconds_per_batch_mean: 0.01662288188934326
seconds_per_batch_min: 0.01630091667175293
seconds_per_batch_std: 0.0007590167680596548
total:
human_readable:
batch_latency: "17.533 ms +/- 836.015 \xB5s [17.193 ms, 23.896 ms]"
batches_per_second: 57.14 +/- 2.20 [41.85, 58.16]
metrics:
batches_per_second_max: 58.16374528511205
batches_per_second_mean: 57.140338855126565
batches_per_second_min: 41.84762740950632
batches_per_second_std: 2.1985066663972677
seconds_per_batch_max: 0.023896217346191406
seconds_per_batch_mean: 0.01753277063369751
seconds_per_batch_min: 0.017192840576171875
seconds_per_batch_std: 0.0008360147274630088
... Your turn
The overall flow can be summarized with the diagram shown below (best viewed on GitHub):
flowchart TB;
A([Start]) --> B
B(prepare_samples)
B --> C[get_machine_info]
C --> D[measure_params]
D --> E[warm_up, batch_size=1]
E --> F[measure_flops]
subgraph SG[Repeat for batch_size 1 and x]
direction TB
G[measure_allocated_memory]
G --> H[warm_up, given batch_size]
H --> I[measure_detailed_inference_timing]
I --> J[measure_repeated_inference_timing]
J --> K[measure_energy]
end
F --> SG
SG --> END([End])
In cases where the sample and model don't reside on the same device (e.g. if a GPU is used for inference), we measure timing in three parts: cpu_to_gpu
, on_device_inference
, and gpu_to_cpu
, as well as a sum of the three, total
. The inference flow is shown below:
flowchart LR;
A([sample])
A --> B[cpu -> gpu]
B --> C[model __call__]
C --> D[gpu -> cpu]
D --> E([result])
Trying to benchmark a custom class, which is not a torch.nn.Module
?
You can pass custom functions to benchmark
as seen in this example.
- Allocated memory measurements are only available on CUDA devices.
- Energy consumption can only be measured on NVIDIA Jetson platforms at the moment.
- FLOPs and parameter count is not support for custom classes.
This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 871449 (OpenDR). It was developed for benchmarking tools in OpenDR, a non-proprietary toolkit for deep learning based functionalities for robotics and vision.
If you like the tool and use it in research, please consider citing it:
@software{hedegaard2022pytorchbenchmark,
author = {Hedegaard, Lukas},
doi = {10.5281/zenodo.7223585},
month = {10},
title = {{PyTorch-Benchmark}},
version = {0.3.5},
year = {2022}
}