ML Papers Explained

Explanations to key concepts in ML

Language Models

Paper Date Description
Transformer June 2017 An Encoder Decoder model, that introduced multihead attention mechanism for language translation task.
Elmo February 2018 Deep contextualized word representations that captures both intricate aspects of word usage and contextual variations across language contexts.
GPT June 2018 A Decoder only transformer which is autoregressively pretrained and then finetuned for specific downstream tasks using task-aware input transformations.
BERT October 2018 Introduced pre-training for Encoder Transformers. Uses unified architecture across different tasks.
Transformer XL January 2019 Extends the original Transformer model to handle longer sequences of text by introducing recurrence into the self-attention mechanism.
XLNet June 2019 Extension of the Transformer-XL, pre-trained using a new method that combines ideas from AR and AE objectives.
RoBERTa July 2019 Built upon BERT, by carefully optimizing hyperparameters and training data size to improve performance on various language tasks .
Sentence BERT August 2019 A modification of BERT that uses siamese and triplet network structures to derive sentence embeddings that can be compared using cosine-similarity.
Tiny BERT September 2019 Uses attention transfer, and task specific distillation for distilling BERT.
ALBERT September 2019 Presents certain parameter reduction techniques to lower memory consumption and increase the training speed of BERT.
Distil BERT October 2019 Distills BERT on very large batches leveraging gradient accumulation, using dynamic masking and without the next sentence prediction objective.
T5 October 2019 A unified encoder-decoder framework that converts all text-based language problems into a text-to-text format.
BART October 2019 A Decoder pretrained to reconstruct the original text from corrupted versions of it.
FastBERT April 2020 A speed-tunable encoder with adaptive inference time having branches at each transformer output to enable early outputs.
MobileBERT April 2020 Compressed and faster version of the BERT, featuring bottleneck structures, optimized attention mechanisms, and knowledge transfer.
Longformer April 2020 Introduces a linearly scalable attention mechanism, allowing handling texts of exteded length.
DeBERTa June 2020 Enhances BERT and RoBERTa through disentangled attention mechanisms, an enhanced mask decoder, and virtual adversarial training.
Codex July 2021 A GPT language model finetuned on publicly available code from GitHub.
FLAN September 2021 An instruction-tuned language model developed through finetuning on various NLP datasets described by natural language instructions.
Gopher December 2021 Provides a comprehensive analysis of the performance of various Transformer models across different scales upto 280B on 152 tasks.
Instruct GPT March 2022 Fine-tuned GPT using supervised learning (instruction tuning) and reinforcement learning from human feedback to align with user intent.
Chinchilla March 2022 Investigated the optimal model size and number of tokens for training a transformer LLM within a given compute budget (Scaling Laws).
PALM April 2022 A 540-B parameter, densely activated, Transformer, trained using Pathways, (ML system that enables highly efficient training across multiple TPU Pods).
OPT May 2022 A suite of decoder-only pre-trained transformers with parameter ranges from 125M to 175B. OPT-175B being comparable to GPT-3.
BLOOM November 2022 A 176B-parameter open-access decoder-only transformer, collaboratively developed by hundreds of researchers, aiming to democratize LLM technology.
Galactica November 2022 An LLM trained on scientific data thus specializing in scientific knowledge.
ChatGPT November 2022 An interactive model designed to engage in conversations, built on top of GPT 3.5.
LLaMA February 2023 A collection of foundation LLMs by Meta ranging from 7B to 65B parameters, trained using publicly available datasets exclusively.

Vision Models

Paper Date Description
Vision Transformer October 2020 Images are segmented into patches, which are treated as tokens and a sequence of linear embeddings of these patches are input to a Transformer
DeiT December 2020 A convolution-free vision transformer that uses a teacher-student strategy with attention-based distillation tokens.
Swin Transformer March 2021 A hierarchical vision transformer that uses shifted windows to addresses the challenges of adapting the transformer model to computer vision.
BEiT June 2021 Utilizes a masked image modeling task inspired by BERT in, involving image patches and visual tokens to pretrain vision Transformers.
MobileViT October 2021 A lightweight vision transformer designed for mobile devices, effectively combining the strengths of CNNs and ViTs.
Masked AutoEncoder November 2021 An encoder-decoder architecture that reconstructs input images by masking random patches and leveraging a high proportion of masking for self-supervision.

Convolutional Neural Networks

Paper Date Description
Lenet December 1998 Introduced Convolutions.
Alex Net September 2012 Introduced ReLU activation and Dropout to CNNs. Winner ILSVRC 2012.
VGG September 2014 Used large number of filters of small size in each layer to learn complex features. Achieved SOTA in ILSVRC 2014.
Inception Net September 2014 Introduced Inception Modules consisting of multiple parallel convolutional layers, designed to recognize different features at multiple scales.
Inception Net v2 / Inception Net v3 December 2015 Design Optimizations of the Inception Modules which improved performance and accuracy.
Res Net December 2015 Introduced residual connections, which are shortcuts that bypass one or more layers in the network. Winner ILSVRC 2015.
Inception Net v4 / Inception ResNet February 2016 Hybrid approach combining Inception Net and ResNet.
Dense Net August 2016 Each layer receives input from all the previous layers, creating a dense network of connections between the layers, allowing to learn more diverse features.
Xception October 2016 Based on InceptionV3 but uses depthwise separable convolutions instead on inception modules.
Res Next November 2016 Built over ResNet, introduces the concept of grouped convolutions, where the filters in a convolutional layer are divided into multiple groups.
Mobile Net V1 April 2017 Uses depthwise separable convolutions to reduce the number of parameters and computation required.
Mobile Net V2 January 2018 Built upon the MobileNetv1 architecture, uses inverted residuals and linear bottlenecks.
Mobile Net V3 May 2019 Uses AutoML to find the best possible neural network architecture for a given problem.
Efficient Net May 2019 Uses a compound scaling method to scale the network's depth, width, and resolution to achieve a high accuracy with a relatively low computational cost.
Conv Mixer January 2022 Processes image patches using standard convolutions for mixing spatial and channel dimensions.

Single Stage Object Detectors

Paper Date Description
SSD December 2015 Discretizes bounding box outputs over a span of various scales and aspect ratios per feature map.
Feature Pyramid Network December 2016 Leverages the inherent multi-scale hierarchy of deep convolutional networks to efficiently construct feature pyramids.
Focal Loss August 2017 Addresses class imbalance in dense object detectors by down-weighting the loss assigned to well-classified examples.

Region-based Convolutional Neural Networks

Paper Date Description
RCNN November 2013 Uses selective search for region proposals, CNNs for feature extraction, SVM for classification followed by box offset regression.
Fast RCNN April 2015 Processes entire image through CNN, employs RoI Pooling to extract feature vectors from ROIs, followed by classification and BBox regression.
Faster RCNN June 2015 A region proposal network (RPN) and a Fast R-CNN detector, collaboratively predict object regions by sharing convolutional features.
Mask RCNN March 2017 Extends Faster R-CNN to solve instance segmentation tasks, by adding a branch for predicting an object mask in parallel with the existing branch.

Document AI

Paper Date Description
Table Net January 2020 An end-to-end deep learning model designed for both table detection and structure recognition.
Donut November 2021 An OCR-free Encoder-Decoder Transformer model. The encoder takes in images, decoder takes in prompts & encoded images to generate the required text.
DiT March 2022 An Image Transformer pre-trained (self-supervised) on document images
UDoP December 2022 Integrates text, image, and layout information through a Vision-Text-Layout Transformer, enabling unified representation.

Layout Transformers

Paper Date Description
Layout LM December 2019 Utilises BERT as the backbone, adds two new input embeddings: 2-D position embedding and image embedding (Only for downstream tasks).
LamBERT February 2020 Utilises RoBERTa as the backbone and adds Layout embeddings along with relative bias.
Layout LM v2 December 2020 Uses a multi-modal Transformer model, to integrate text, layout, and image in the pre-training stage, to learn end-to-end cross-modal interaction.
Structural LM May 2021 Utilises BERT as the backbone and feeds text, 1D and (2D cell level) embeddings to the transformer model.
Doc Former June 2021 Encoder-only transformer with a CNN backbone for visual feature extraction, combines text, vision, and spatial features through a multi-modal self-attention layer.
LiLT February 2022 Introduced Bi-directional attention complementation mechanism (BiACM) to accomplish the cross-modal interaction of text and layout.
Layout LM V3 April 2022 A unified text-image multimodal Transformer to learn cross-modal representations, that imputs concatenation of text embedding and image embedding.
ERNIE Layout October 2022 Reorganizes tokens using layout information, combines text and visual embeddings, utilizes multi-modal transformers with spatial aware disentangled attention.

Tabular Deep Learning

Paper Date Description
Entity Embeddings April 2016 Maps categorical variables into continuous vector spaces through neural network learning, revealing intrinsic properties.
Wide and Deep Learning June 2016 Combines memorization of specific patterns with generalization of similarities.
Deep and Cross Network August 2017 Combines the a novel cross network with deep neural networks (DNNs) to efficiently learn feature interactions without manual feature engineering.
Tab Transformer December 2020 Employs multi-head attention-based Transformer layers to convert categorical feature embeddings into robust contextual embeddings.
Tabular ResNet June 2021 An MLP with skip connections.
Feature Tokenizer Transformer June 2021 Transforms all features (categorical and numerical) to embeddings and applies a stack of Transformer layers to the embeddings.

Miscellaneous

Paper Date Description
ColD Fusion December 2022 A method enabling the benefits of multitask learning through distributed computation without data sharing and improving model performance.

Literature Reviewed

Reading Lists


Reach out to Ritvik or Elvis if you have any questions.

If you are interested to contribute, feel free to open a PR.

Join our Discord