/ESP32TimerInterrupt

This library enables you to use Interrupt from Hardware Timers on an ESP32-based board. It now supports 16 ISR-based timers, while consuming only 1 hardware Timer. Timers' interval is very long (ulong millisecs). The most important feature is they're ISR-based timers. Therefore, their executions are not blocked by bad-behaving functions or tasks. This important feature is absolutely necessary for mission-critical tasks.

Primary LanguageC++MIT LicenseMIT

ESP32TimerInterrupt Library

arduino-library-badge GitHub release GitHub contributions welcome GitHub issues



Table of Contents



Why do we need this ESP32TimerInterrupt library

Features

This library enables you to use Interrupt from Hardware Timers on an ESP32-based board.

As Hardware Timers are rare, and very precious assets of any board, this library now enables you to use up to 16 ISR-based Timers, while consuming only 1 Hardware Timer. Timers' interval is very long (ulong millisecs).

Now with these new 16 ISR-based timers, the maximum interval is practically unlimited (limited only by unsigned long miliseconds) while the accuracy is nearly perfect compared to software timers.

The most important feature is they're ISR-based timers. Therefore, their executions are not blocked by bad-behaving functions / tasks. This important feature is absolutely necessary for mission-critical tasks.

The ISR_Timer_Complex example will demonstrate the nearly perfect accuracy compared to software timers by printing the actual elapsed millisecs of each type of timers.

Being ISR-based timers, their executions are not blocked by bad-behaving functions / tasks, such as connecting to WiFi, Internet and Blynk services. You can also have many (up to 16) timers to use.

This non-being-blocked important feature is absolutely necessary for mission-critical tasks.

You'll see blynkTimer Software is blocked while system is connecting to WiFi / Internet / Blynk, as well as by blocking task in loop(), using delay() function as an example. The elapsed time then is very unaccurate

Why using ISR-based Hardware Timer Interrupt is better

Imagine you have a system with a mission-critical function, measuring water level and control the sump pump or doing something much more important. You normally use a software timer to poll, or even place the function in loop(). But what if another function is blocking the loop() or setup().

So your function might not be executed, and the result would be disastrous.

You'd prefer to have your function called, no matter what happening with other functions (busy loop, bug, etc.).

The correct choice is to use a Hardware Timer with Interrupt to call your function.

These hardware timers, using interrupt, still work even if other functions are blocking. Moreover, they are much more precise (certainly depending on clock frequency accuracy) than other software timers using millis() or micros(). That's necessary if you need to measure some data requiring better accuracy.

Functions using normal software timers, relying on loop() and calling millis(), won't work if the loop() or setup() is blocked by certain operation. For example, certain function is blocking while it's connecting to WiFi or some services.

The catch is your function is now part of an ISR (Interrupt Service Routine), and must be lean / mean, and follow certain rules. More to read on:

HOWTO Attach Interrupt


Currently supported Boards

  1. ESP32-based boards

Important Notes about ISR

  1. Inside the attached function, delay() won’t work and the value returned by millis() will not increment. Serial data received while in the function may be lost. You should declare as volatile any variables that you modify within the attached function.

  2. Typically global variables are used to pass data between an ISR and the main program. To make sure variables shared between an ISR and the main program are updated correctly, declare them as volatile.



Changelog

Releases v1.4.0

  1. Fix compiler errors due to conflict to some libraries.
  2. Add complex examples.

Releases v1.3.0

  1. Add support to ESP32-S2 and ESP32-C3
  2. Add support to new ESP32 core v1.0.6
  3. Update examples

Releases v1.2.0

  1. Add better debug feature.
  2. Optimize code and examples to reduce RAM usage

Releases v1.1.1

  1. Add Change_Interval example to show how to change TimerInterval on-the-fly
  2. Add Version String and Change_Interval example to show how to change TimerInterval

Releases v1.1.0

  1. Restore cpp code besides Impl.h code to use if Multiple-Definition linker error.
  2. Update examples.
  3. Enhance README.

Releases v1.0.3

  1. Restructure code.
  2. Add examples.
  3. Enhance README.

Releases v1.0.2

  1. Permit up to 16 super-long-time, super-accurate ISR-based timers to avoid being blocked


Prerequisites

  1. Arduino IDE 1.8.15+ for Arduino
  2. ESP32-S2/C3 Core 1.0.6+ for ESP32-S2/C3-based boards. Must follow HOWTO Install esp32 core for ESP32-S2 (Saola, AI-Thinker ESP-12K) and ESP32-C3 boards into Arduino IDE.


Installation

Use Arduino Library Manager

The best and easiest way is to use Arduino Library Manager. Search for ESP32TimerInterrupt, then select / install the latest version. You can also use this link arduino-library-badge for more detailed instructions.

Manual Install

Another way to install is to:

  1. Navigate to ESP32TimerInterrupt page.
  2. Download the latest release ESP32TimerInterrupt-master.zip.
  3. Extract the zip file to ESP32TimerInterrupt-master directory
  4. Copy whole ESP32TimerInterrupt-master folder to Arduino libraries' directory such as ~/Arduino/libraries/.

VS Code & PlatformIO

  1. Install VS Code
  2. Install PlatformIO
  3. Install ESP32TimerInterrupt library by using Library Manager. Search for ESP32TimerInterrupt in Platform.io Author's Libraries
  4. Use included platformio.ini file from examples to ensure that all dependent libraries will installed automatically. Please visit documentation for the other options and examples at Project Configuration File


HOWTO Install esp32 core for ESP32-S2 (Saola, AI-Thinker ESP-12K) and ESP32-C3 boards into Arduino IDE

These are instructions demonstrating the steps to install esp32-s2/c3 core on Ubuntu machines. For Windows or other OS'es, just follow the the similar principles and steps.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_dev_index.json

and have Board Manager auto-install the development esp32 core. For example : esp32 core v2.0.0-alpha1


If you're already successful in testing the core, after installing by using the above procedures, you don't need to follows the hereafter manual steps.


Assuming you already installed Arduino IDE ESP32 core and the installed directory is

/home/your_account/.arduino15/packages/esp32

1. Save the original esp32 core

First, copy the whole original esp32 core to another safe place. Then delete all the sub-directories of

/home/your_account/.arduino15/packages/esp32/hardware/esp32/1.0.4


2. Install esp32 core v1.0.6

2.1 Install esp32 core

Just use Arduino IDE Board Manager to install ESP32 Arduino Release 1.0.6 based on ESP-IDF v3.3.5. This official v1.06 core doesn't have esp32-s2/s3 support. You have to download and use the latest master branch.

2.2 Download latest zip with esp32-s2 support

As of April 16th 2021, the esp32-s2/c3 board support has been included in master branch of esp32 core. Download esp32 core, master branch in the zip format.

2.3 Unzip

2.4 Update esp32 core directories

Copy all subdirectories of esp32 core into /home/your_account/.arduino15/packages/esp32/hardware/esp32/1.0.6


3 Download tools for ESP32-S2

3.1 Download Toolchain for Xtensa (ESP32-S2) based on GCC

Download esp32-s2 Toolchain corresponding to your environment (linux-amd64, win64, etc.).

For example xtensa-esp32s2-elf-gcc8_4_0-esp-2020r3-linux-amd64.tar.gz, then un-archive.

3.2 Download esptool

Download esptool int the zip format:

esptool-3.0.zip

3.3 Unzip


4. Update tools

4.1 Update Toolchain

Copy whole xtensa-esp32s2-elf directory into /home/your_account/.arduino15/packages/esp32/hardware/esp32/1.0.6/tools

4.2 Update esptool

Rename esptool-3.0 directory to esptool

Copy whole esptool directory into /home/your_account/.arduino15/packages/esp32/hardware/esp32/1.0.6/tools

5 Download tools for ESP32-C3

Download esp32-c3 Toolchain corresponding to your environment (linux-amd64, win64, etc.).

For exampleriscv32-esp-elf-gcc8_4_0-crosstool-ng-1.24.0-123-g64eb9ff-linux-amd64.tar.gz, then un-archive.

Then using the similar steps as in

then copy whole riscv32-esp-elf directory into /home/your_account/.arduino15/packages/esp32/hardware/esp32/1.0.6/tools

6. esp32-s2 WebServer Library Patch

Necessary only for esp32 core v1.0.6-

If you haven't installed a new version with WebServer.handleClient delay PR #4350 or haven't applied the above mentioned PR, you have to use the following patch.

To be able to run Config Portal on ESP32-S2 boards, you have to copy the files in esp32-s2 WebServer Patch directory into esp32-s2 WebServer library directory (~/.arduino15/packages/esp32/hardware/esp32/1.0.4/libraries/WebServer).

Supposing the esp32-s2 version is 1.0.4, these files WebServer.h/cpp must be copied into the directory to replace:

  • ~/.arduino15/packages/esp32/hardware/esp32/1.0.4/libraries/WebServer/src/WebServer.h
  • ~/.arduino15/packages/esp32/hardware/esp32/1.0.4/libraries/WebServer/src/WebServer.cpp

That's it. You're now ready to compile and test for ESP32-S2 and ESP32-C3 now



Note for Platform IO using ESP32 LittleFS

Necessary only for esp32 core v1.0.6-

From esp32 core v1.0.6+, LittleFS_esp32 v1.0.6 has been included and this step is not necessary anymore.

In Platform IO, to fix the error when using LittleFS_esp32 v1.0 for ESP32-based boards with ESP32 core v1.0.4- (ESP-IDF v3.2-), uncomment the following line

from

//#define CONFIG_LITTLEFS_FOR_IDF_3_2   /* For old IDF - like in release 1.0.4 */

to

#define CONFIG_LITTLEFS_FOR_IDF_3_2   /* For old IDF - like in release 1.0.4 */

It's advisable to use the latest LittleFS_esp32 v1.0.5+ to avoid the issue.

Thanks to Roshan to report the issue in Error esp_littlefs.c 'utime_p'



HOWTO Fix Multiple Definitions Linker Error

The current library implementation, using xyz-Impl.h instead of standard xyz.cpp, possibly creates certain Multiple Definitions Linker error in certain use cases. Although it's simple to just modify several lines of code, either in the library or in the application, the library is adding 2 more source directories

  1. scr_h for new h-only files
  2. src_cpp for standard h/cpp files

besides the standard src directory.

To use the old standard cpp way, locate this library' directory, then just

  1. Delete the all the files in src directory.
  2. Copy all the files in src_cpp directory into src.
  3. Close then reopen the application code in Arduino IDE, etc. to recompile from scratch.

To re-use the new h-only way, just

  1. Delete the all the files in src directory.
  2. Copy the files in src_h directory into src.
  3. Close then reopen the application code in Arduino IDE, etc. to recompile from scratch.


HOWTO Use analogRead() with ESP32 running WiFi and/or BlueTooth (BT/BLE)

Please have a look at ESP_WiFiManager Issue 39: Not able to read analog port when using the autoconnect example to have more detailed description and solution of the issue.

1. ESP32 has 2 ADCs, named ADC1 and ADC2

2. ESP32 ADCs functions

  • ADC1 controls ADC function for pins GPIO32-GPIO39
  • ADC2 controls ADC function for pins GPIO0, 2, 4, 12-15, 25-27

3.. ESP32 WiFi uses ADC2 for WiFi functions

Look in file adc_common.c

In ADC2, there're two locks used for different cases:

  1. lock shared with app and Wi-Fi: ESP32: When Wi-Fi using the ADC2, we assume it will never stop, so app checks the lock and returns immediately if failed. ESP32S2: The controller's control over the ADC is determined by the arbiter. There is no need to control by lock.

  2. lock shared between tasks: when several tasks sharing the ADC2, we want to guarantee all the requests will be handled. Since conversions are short (about 31us), app returns the lock very soon, we use a spinlock to stand there waiting to do conversions one by one.

adc2_spinlock should be acquired first, then adc2_wifi_lock or rtc_spinlock.

  • In order to use ADC2 for other functions, we have to acquire complicated firmware locks and very difficult to do
  • So, it's not advisable to use ADC2 with WiFi/BlueTooth (BT/BLE).
  • Use ADC1, and pins GPIO32-GPIO39
  • If somehow it's a must to use those pins serviced by ADC2 (GPIO0, 2, 4, 12, 13, 14, 15, 25, 26 and 27), use the fix mentioned at the end of ESP_WiFiManager Issue 39: Not able to read analog port when using the autoconnect example to work with ESP32 WiFi/BlueTooth (BT/BLE).


More useful Information

The ESP32 has two timer groups, each one with two general purpose hardware timers. All the timers are based on 64 bits counters and 16 bit prescalers.

The timer counters can be configured to count up or down and support automatic reload and software reload.

They can also generate alarms when they reach a specific value, defined by the software. The value of the counter can be read by the software program.


Now with these new 16 ISR-based timers (while consuming only 1 hardware timer), the maximum interval is practically unlimited (limited only by unsigned long miliseconds). The accuracy is nearly perfect compared to software timers. The most important feature is they're ISR-based timers Therefore, their executions are not blocked by bad-behaving functions / tasks. This important feature is absolutely necessary for mission-critical tasks.

The ISR_Timer_Complex example will demonstrate the nearly perfect accuracy compared to software timers by printing the actual elapsed millisecs of each type of timers. Being ISR-based timers, their executions are not blocked by bad-behaving functions / tasks, such as connecting to WiFi, Internet and Blynk services. You can also have many (up to 16) timers to use. This non-being-blocked important feature is absolutely necessary for mission-critical tasks. You'll see blynkTimer Software is blocked while system is connecting to WiFi / Internet / Blynk, as well as by blocking task in loop(), using delay() function as an example. The elapsed time then is very unaccurate



How to use

Before using any Timer, you have to make sure the Timer has not been used by any other purpose.

Timer0, Timer1, Timer2 and Timer3 are supported for ESP32.



Examples:

  1. Argument_None
  2. ISR_RPM_Measure
  3. ISR_Switch
  4. ISR_Timer_4_Switches
  5. ISR_Timer_Complex
  6. ISR_Timer_Switch
  7. ISR_Timer_Switches
  8. RPM_Measure
  9. SwitchDebounce
  10. TimerInterruptTest
  11. Change_Interval
  12. ISR_16_Timers_Array
  13. ISR_16_Timers_Array_Complex.


#ifndef ESP32
  #error This code is designed to run on ESP32 platform, not Arduino nor ESP8266! Please check your Tools->Board setting.
#elif ( ARDUINO_ESP32S2_DEV || ARDUINO_FEATHERS2 || ARDUINO_ESP32S2_THING_PLUS || ARDUINO_MICROS2 || \
        ARDUINO_METRO_ESP32S2 || ARDUINO_MAGTAG29_ESP32S2 || ARDUINO_FUNHOUSE_ESP32S2 || \
        ARDUINO_ADAFRUIT_FEATHER_ESP32S2_NOPSRAM )
  #define USING_ESP32_S2_TIMER_INTERRUPT            true
#endif

#define BLYNK_PRINT Serial

//#define BLYNK_DEBUG
#ifdef BLYNK_DEBUG
  #undef BLYNK_DEBUG
#endif

#include <WiFi.h>

#define USE_SSL     false

#if USE_SSL
  #include <BlynkSimpleEsp32_SSL.h>
  #define BLYNK_HARDWARE_PORT     9443
#else
  #include <BlynkSimpleEsp32.h>
  #define BLYNK_HARDWARE_PORT     8080
#endif

#define USE_LOCAL_SERVER    true

// If local server
#if USE_LOCAL_SERVER
  char blynk_server[]   = "account.duckdns.org";
  //char blynk_server[]   = "192.168.2.110";
#else
  char blynk_server[]   = "";
#endif

char auth[]     = "****";
char ssid[]     = "****";
char pass[]     = "****";

// These define's must be placed at the beginning before #include "TimerInterrupt_Generic.h"
// _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
// Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define TIMER_INTERRUPT_DEBUG         0
#define _TIMERINTERRUPT_LOGLEVEL_     0

#include "ESP32TimerInterrupt.h"
#include "ESP32_ISR_Timer.h"

#define TIMER_INTERVAL_MS         100
#define HW_TIMER_INTERVAL_MS      50

#define WIFI_TIMEOUT              20000L

volatile uint32_t lastMillis = 0;

// Init ESP32 timer 1
ESP32Timer ITimer(1);

// Init ESP32_ISR_Timer
ESP32_ISR_Timer ISR_Timer;

// Ibit Blynk Timer
BlynkTimer blynkTimer;

#ifndef LED_BUILTIN
  #define LED_BUILTIN       2         // Pin D2 mapped to pin GPIO2/ADC12 of ESP32, control on-board LED
#endif

#define LED_TOGGLE_INTERVAL_MS        5000L

#if USING_ESP32_S2_TIMER_INTERRUPT
  void IRAM_ATTR TimerHandler(void * timerNo)
#else
  void IRAM_ATTR TimerHandler(void)
#endif
{
#if USING_ESP32_S2_TIMER_INTERRUPT
  /////////////////////////////////////////////////////////
  // Always call this for ESP32-S2 before processing ISR
  TIMER_ISR_START(timerNo);
  /////////////////////////////////////////////////////////
#endif

  static bool toggle  = false;
  static int timeRun  = 0;

  ISR_Timer.run();

  // Toggle LED every LED_TOGGLE_INTERVAL_MS = 5000ms = 5s
  if (++timeRun == (LED_TOGGLE_INTERVAL_MS / HW_TIMER_INTERVAL_MS) )
  {
    timeRun = 0;

    //timer interrupt toggles pin LED_BUILTIN
    digitalWrite(LED_BUILTIN, toggle);
    toggle = !toggle;
  }

#if USING_ESP32_S2_TIMER_INTERRUPT
  /////////////////////////////////////////////////////////
  // Always call this for ESP32-S2 after processing ISR
  TIMER_ISR_END(timerNo);
  /////////////////////////////////////////////////////////
#endif
}

// In ESP32, avoid doing something fancy in ISR, for example complex Serial.print with String() argument
// The pure simple Serial.prints here are just for demonstration and testing. Must be eliminate in working environment
// Or you can get this run-time error / crash : "Guru Meditation Error: Core 1 panic'ed (Cache disabled but cached memory region accessed)"
void IRAM_ATTR doingSomething2s()
{
#if (TIMER_INTERRUPT_DEBUG > 0)  
  static unsigned long previousMillis = lastMillis;
  unsigned long deltaMillis = millis() - previousMillis;
  
  Serial.print("2s: D ms = "); Serial.println(deltaMillis);
  
  previousMillis = millis();
#endif

#if (TIMER_INTERRUPT_DEBUG > 1)
  Serial.print("2s: core "); Serial.println(xPortGetCoreID());
#endif
}

// In ESP32, avoid doing something fancy in ISR, for example complex Serial.print with String() argument
// The pure simple Serial.prints here are just for demonstration and testing. Must be eliminate in working environment
// Or you can get this run-time error / crash : "Guru Meditation Error: Core 1 panic'ed (Cache disabled but cached memory region accessed)"
void IRAM_ATTR doingSomething5s()
{
#if (TIMER_INTERRUPT_DEBUG > 0)  
  static unsigned long previousMillis = lastMillis;
  unsigned long deltaMillis = millis() - previousMillis;
  
  Serial.print("5s: D ms = "); Serial.println(deltaMillis);
  
  previousMillis = millis();
#endif
  
#if (TIMER_INTERRUPT_DEBUG > 1)
  Serial.print("5s: core "); Serial.println(xPortGetCoreID());
#endif
}

// In ESP32, avoid doing something fancy in ISR, for example complex Serial.print with String() argument
// The pure simple Serial.prints here are just for demonstration and testing. Must be eliminate in working environment
// Or you can get this run-time error / crash : "Guru Meditation Error: Core 1 panic'ed (Cache disabled but cached memory region accessed)"
void IRAM_ATTR doingSomething11s()
{
#if (TIMER_INTERRUPT_DEBUG > 0)  
  static unsigned long previousMillis = lastMillis;
  unsigned long deltaMillis = millis() - previousMillis;
  
  Serial.print("11s: D ms = "); Serial.println(deltaMillis);

  previousMillis = millis();
#endif
}

// In ESP32, avoid doing something fancy in ISR, for example complex Serial.print with String() argument
// The pure simple Serial.prints here are just for demonstration and testing. Must be eliminate in working environment
// Or you can get this run-time error / crash : "Guru Meditation Error: Core 1 panic'ed (Cache disabled but cached memory region accessed)"
void IRAM_ATTR doingSomething101s()
{
#if (TIMER_INTERRUPT_DEBUG > 0)  
  static unsigned long previousMillis = lastMillis;
  unsigned long deltaMillis = millis() - previousMillis;
  
  Serial.print("101s: D ms = "); Serial.println(deltaMillis);

  previousMillis = millis();
#endif
}

#define BLYNK_TIMER_MS        2000L

// Here is software Timer, you can do somewhat fancy stuffs without many issues.
// But always avoid
// 1. Long delay() it just doing nothing and pain-without-gain wasting CPU power.Plan and design your code / strategy ahead
// 2. Very long "do", "while", "for" loops without predetermined exit time.
void blynkDoingSomething2s()
{
  static unsigned long previousMillis = lastMillis;
  
  Serial.print(F("blynkDoingSomething2s: Delta programmed ms = ")); Serial.print(BLYNK_TIMER_MS);
  Serial.print(F(", actual = ")); Serial.println(millis() - previousMillis);
  
  previousMillis = millis();
}

void setup()
{
  pinMode(LED_BUILTIN, OUTPUT);
  
  // Just a temporary hack
  // ESP32 WiFi is still buggy. By moving it up here, we can avoid interfering / interacting problem with other ISRs
  WiFi.begin(ssid, pass);

  delay(2000);

  Serial.begin(115200);
  while (!Serial);

  Serial.print(F("\nStarting ISR_Timer_Complex on ")); Serial.println(ARDUINO_BOARD);

#if USING_ESP32_S2_TIMER_INTERRUPT
  Serial.println(ESP32_S2_TIMER_INTERRUPT_VERSION);
#else
  Serial.println(ESP32_TIMER_INTERRUPT_VERSION);
#endif

  Serial.print(F("CPU Frequency = ")); Serial.print(F_CPU / 1000000); Serial.println(F(" MHz"));
  
  // You need this timer for non-critical tasks. Avoid abusing ISR if not absolutely necessary.
  blynkTimer.setInterval(BLYNK_TIMER_MS, blynkDoingSomething2s);


  // Using ESP32  => 80 / 160 / 240MHz CPU clock ,
  // For 64-bit timer counter
  // For 16-bit timer prescaler up to 1024

  // Interval in microsecs
  if (ITimer.attachInterruptInterval(HW_TIMER_INTERVAL_MS * 1000, TimerHandler))
  {
    lastMillis = millis();
    Serial.print(F("Starting ITimer OK, millis() = ")); Serial.println(lastMillis);
  }
  else
    Serial.println(F("Can't set ITimer correctly. Select another freq. or interval"));


  // Just to demonstrate, don't use too many ISR Timers if not absolutely necessary
  ISR_Timer.setInterval(2000L, doingSomething2s);
  ISR_Timer.setInterval(5000L, doingSomething5s);
  ISR_Timer.setInterval(11000L, doingSomething11s);
  ISR_Timer.setInterval(101000L, doingSomething101s);

  unsigned long startWiFi = millis();

  do
  {
    delay(200);
    if ( (WiFi.status() == WL_CONNECTED) || (millis() > startWiFi + WIFI_TIMEOUT) )
      break;
  } while (WiFi.status() != WL_CONNECTED);

  Blynk.config(auth, blynk_server, BLYNK_HARDWARE_PORT);
  Blynk.connect();

  if (Blynk.connected())
    Serial.println(F("Blynk connected"));
  else
    Serial.println(F("Blynk not connected yet"));
}

#define BLOCKING_TIME_MS      3000L

void loop()
{
  static bool needWiFiBegin = true;

  Blynk.run();

  // Blynk.run() in ESP32 doesn't reconnect automatically without below code with WiFi.begin(ssid, pass);
  if (!Blynk.connected())
  {
    if (WiFi.status() != WL_CONNECTED)
    {
      unsigned long startWiFi = millis();
      Serial.println(F("WiFi not connected. Reconnect"));

      // Need to run again once per conn. lost
      if (needWiFiBegin)
      {
        Serial.println(F("WiFi begin again"));
        WiFi.begin(ssid, pass);
        needWiFiBegin = false;
      }

      do
      {
        delay(200);
        if ( (WiFi.status() == WL_CONNECTED) || (millis() > startWiFi + WIFI_TIMEOUT) )
        {
          // There is ESP32 bug, if WiFi+Blynk connected, then lost WiFi+ Internet
          // ESP32 can't reconect, even if we place WiFi.begin() again in loop()
          // The _network_event_task(void * arg) in WiFiGeneric.cpp is just waiting forever for data
          ESP.restart();
        }
      } while (WiFi.status() != WL_CONNECTED);
    }
    else
    {
      // Ready for next conn. lost
      Serial.println(F("reset needWiFiBegin"));
      needWiFiBegin = true;
      Blynk.config(auth, blynk_server, BLYNK_HARDWARE_PORT);
      Blynk.connect();
    }
  }
  else
  {
    // Ready for next conn. lost
    //needWiFiBegin = true;
  }

  // This unadvised blocking task is used to demonstrate the blocking effects onto the execution and accuracy to Software timer
  // You see the time elapse of ESP32_ISR_Timer still accurate, whereas very unaccurate for Software Timer
  // The time elapse for 2000ms software timer now becomes 3000ms (BLOCKING_TIME_MS)
  // While that of ESP32_ISR_Timer is still prefect.
  delay(BLOCKING_TIME_MS);

  // You need this Software timer for non-critical tasks. Avoid abusing ISR if not absolutely necessary
  // You don't need to and never call ISR_Timer.run() here in the loop(). It's already handled by ISR timer.
  blynkTimer.run();
}


Debug Terminal Output Samples

1. ISR_Timer_Complex on ESP32_DEV

The following is the sample terminal output when running example ISR_Timer_Complex to demonstrate the accuracy of ISR Hardware Timer, especially when system is very busy. The ISR timer is programmed for 2s, is activated exactly after 2.000s !!!

While software timer, programmed for 2s, is activated after 3.435s !!!

Starting ISR_Timer_Complex on ESP32_DEV
ESP32TimerInterrupt v1.4.0
CPU Frequency = 240 MHz
ESP32TimerInterrupt: _timerNo = 1, _fre = 1000000.00, _count = 0 - 50000
Starting  ITimer OK, millis() = 2140
[2341] 
    ___  __          __
   / _ )/ /_ _____  / /__
  / _  / / // / _ \/  '_/
 /____/_/\_, /_//_/_/\_\
        /___/ v0.6.1 on ESP32

[2342] Protocol connect: timeout =9000
[2346] BlynkArduinoClient.connect: Connecting to ****.duckdns.org:8080
[2506] Ready (ping: 35ms).
Blynk connected
2s: D ms = 2000   <=== ISR Timer still very accurate while system busy
blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3435 <=== Software Timer not accurate when system busy
2s: D ms = 2000   <=== ISR Timer still very accurate no matter system busy or not
5s: D ms = 5000
2s: D ms = 2000
blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
2s: D ms = 2000
blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
2s: D ms = 2000
5s: D ms = 5000
11s: D ms = 11000
2s: D ms = 2000
blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
2s: D ms = 2000
5s: D ms = 5000
blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3002
2s: D ms = 2000
2s: D ms = 2000
blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
2s: D ms = 2000
5s: D ms = 5000
blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
2s: D ms = 2000
11s: D ms = 11000
2s: D ms = 2000
blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
5s: D ms = 5000
2s: D ms = 2000
blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3002
2s: D ms = 2000
2s: D ms = 2000
5s: D ms = 5000
blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
2s: D ms = 2000
11s: D ms = 11000
blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000
2s: D ms = 2000
5s: D ms = 5000
2s: D ms = 2000
blynkDoingSomething2s: Delta programmed ms = 2000, actual = 3000

2. TimerInterruptTest on ESP32_DEV

The following is the sample terminal output when running example TimerInterruptTest to demonstrate how to start/stop Hardware Timers.

Starting TimerInterruptTest on ESP32_DEV
ESP32TimerInterrupt v1.4.0
CPU Frequency = 240 MHz
ESP32TimerInterrupt: _timerNo = 0, _fre = 1000000.00, _count = 0 - 1000000
Starting  ITimer0 OK, millis() = 136
ESP32TimerInterrupt: _timerNo = 1, _fre = 1000000.00, _count = 0 - 3000000
Starting  ITimer1 OK, millis() = 145
ITimer0: millis() = 1136
ITimer0: millis() = 2136
ITimer0: millis() = 3136
ITimer1: millis() = 3145
ITimer0: millis() = 4136
Stop ITimer0, millis() = 5001
ITimer1: millis() = 6145
ITimer1: millis() = 9145
Start ITimer0, millis() = 10002
ITimer0: millis() = 11002
ITimer0: millis() = 12002
ITimer1: millis() = 12145
ITimer0: millis() = 13002
ITimer0: millis() = 14002
Stop ITimer1, millis() = 15001
ITimer0: millis() = 15002
Stop ITimer0, millis() = 15003
Start ITimer0, millis() = 20004
ITimer0: millis() = 21004
ITimer0: millis() = 22004
ITimer0: millis() = 23004
ITimer0: millis() = 24004
ITimer0: millis() = 25004
Stop ITimer0, millis() = 25005
Start ITimer1, millis() = 30002
Start ITimer0, millis() = 30006
ITimer0: millis() = 31006
ITimer0: millis() = 32006
ITimer1: millis() = 33002
ITimer0: millis() = 33006
ITimer0: millis() = 34006
ITimer0: millis() = 35006
Stop ITimer0, millis() = 35007
ITimer1: millis() = 36002
ITimer1: millis() = 39002
Start ITimer0, millis() = 40008
ITimer0: millis() = 41008
ITimer1: millis() = 42002
ITimer0: millis() = 42008
ITimer0: millis() = 43008
ITimer0: millis() = 44008
ITimer1: millis() = 45002
Stop ITimer1, millis() = 45003
ITimer0: millis() = 45008
Stop ITimer0, millis() = 45009


3. Change_Interval on ESP32_DEV

The following is the sample terminal output when running example Change_Interval to demonstrate how to change Timer Interval on-the-fly

Starting Change_Interval on ESP32_DEV
ESP32TimerInterrupt v1.4.0
CPU Frequency = 240 MHz
Starting  ITimer0 OK, millis() = 136
Starting  ITimer1 OK, millis() = 136
Time = 10001, Timer0Count = 19, , Timer1Count = 9
Time = 20002, Timer0Count = 39, , Timer1Count = 19
Changing Interval, Timer0 = 1000,  Timer1 = 2000
Time = 30003, Timer0Count = 49, , Timer1Count = 24
Time = 40004, Timer0Count = 59, , Timer1Count = 29
Changing Interval, Timer0 = 500,  Timer1 = 1000
Time = 50005, Timer0Count = 79, , Timer1Count = 39
Time = 60006, Timer0Count = 99, , Timer1Count = 49
Changing Interval, Timer0 = 1000,  Timer1 = 2000
Time = 70007, Timer0Count = 109, , Timer1Count = 54
Time = 80008, Timer0Count = 119, , Timer1Count = 59
Changing Interval, Timer0 = 500,  Timer1 = 1000
Time = 90009, Timer0Count = 139, , Timer1Count = 69
Time = 100010, Timer0Count = 159, , Timer1Count = 79
Changing Interval, Timer0 = 1000,  Timer1 = 2000
Time = 110011, Timer0Count = 169, , Timer1Count = 84
Time = 120012, Timer0Count = 179, , Timer1Count = 89
Changing Interval, Timer0 = 500,  Timer1 = 1000
Time = 130013, Timer0Count = 199, , Timer1Count = 99
Time = 140014, Timer0Count = 219, , Timer1Count = 109
Changing Interval, Timer0 = 1000,  Timer1 = 2000
Time = 150015, Timer0Count = 229, , Timer1Count = 114
Time = 160016, Timer0Count = 239, , Timer1Count = 119
Changing Interval, Timer0 = 500,  Timer1 = 1000
Time = 170017, Timer0Count = 259, , Timer1Count = 129
Time = 180018, Timer0Count = 279, , Timer1Count = 139

4. TimerInterruptTest on ESP32_S2_DEV

The following is the sample terminal output when running example TimerInterruptTest on ESP32S2_DEV to demonstrate how to start/stop Hardware Timers.

Starting TimerInterruptTest on ESP32S2_DEV
ESP32_S2_TimerInterrupt v1.4.0
CPU Frequency = 240 MHz
[TISR] ESP32_S2_TimerInterrupt: _timerNo = 0 , _fre = 1000000
[TISR] TIMER_BASE_CLK = 80000000 , TIMER_DIVIDER = 80
[TISR] _timerIndex = 0 , _timerGroup = 0
[TISR] _count = 0 - 1000000
[TISR] timer_set_alarm_value = 1000000.00
ITimer0 called, millis() = 721
Starting  ITimer0 OK, millis() = 725
[TISR] ESP32_S2_TimerInterrupt: _timerNo = 1 , _fre = 1000000
[TISR] TIMER_BASE_CLK = 80000000 , TIMER_DIVIDER = 80
[TISR] _timerIndex = 1 , _timerGroup = 0
[TISR] _count = 0 - 3000000
[TISR] timer_set_alarm_value = 3000000.00
ITimer1 called, millis() = 747
Starting  ITimer1 OK, millis() = 751
ITimer0 called, millis() = 1715
ITimer0 called, millis() = 2715
ITimer0 called, millis() = 3715
ITimer1 called, millis() = 3741
ITimer0 called, millis() = 4715
Stop ITimer0, millis() = 5001
ITimer1 called, millis() = 6741
ITimer1 called, millis() = 9741
Start ITimer0, millis() = 10002
ITimer0 called, millis() = 11002
ITimer0 called, millis() = 12002
ITimer1 called, millis() = 12741
ITimer0 called, millis() = 13002
ITimer0 called, millis() = 14002
Stop ITimer1, millis() = 15001
ITimer0 called, millis() = 15002
Stop ITimer0, millis() = 15003

5. ISR_16_Timers_Array_Complex on ESP32_DEV

The following is the sample terminal output when running example ISR_16_Timers_Array_Complex on ESP32_DEV to demonstrate of ISR Hardware Timer, especially when system is very busy or blocked. The 16 independent ISR timers are programmed to be activated repetitively after certain intervals, is activated exactly after that programmed interval !!!

Starting ISR_16_Timers_Array_Complex on ESP32_DEV
ESP32TimerInterrupt v1.4.0
CPU Frequency = 240 MHz
Starting ITimer OK, millis() = 128
SimpleTimer : 2, ms : 10129, Dms : 10000
Timer : 0, programmed : 5000, actual : 5009
Timer : 1, programmed : 10000, actual : 0
Timer : 2, programmed : 15000, actual : 0
Timer : 3, programmed : 20000, actual : 0
Timer : 4, programmed : 25000, actual : 0
Timer : 5, programmed : 30000, actual : 0
Timer : 6, programmed : 35000, actual : 0
Timer : 7, programmed : 40000, actual : 0
Timer : 8, programmed : 45000, actual : 0
Timer : 9, programmed : 50000, actual : 0
Timer : 10, programmed : 55000, actual : 0
Timer : 11, programmed : 60000, actual : 0
Timer : 12, programmed : 65000, actual : 0
Timer : 13, programmed : 70000, actual : 0
Timer : 14, programmed : 75000, actual : 0
Timer : 15, programmed : 80000, actual : 0
SimpleTimer : 2, ms : 20182, Dms : 10053
Timer : 0, programmed : 5000, actual : 5000
Timer : 1, programmed : 10000, actual : 10000
Timer : 2, programmed : 15000, actual : 15009
Timer : 3, programmed : 20000, actual : 20009
Timer : 4, programmed : 25000, actual : 0
Timer : 5, programmed : 30000, actual : 0
Timer : 6, programmed : 35000, actual : 0
Timer : 7, programmed : 40000, actual : 0
Timer : 8, programmed : 45000, actual : 0
Timer : 9, programmed : 50000, actual : 0
Timer : 10, programmed : 55000, actual : 0
Timer : 11, programmed : 60000, actual : 0
Timer : 12, programmed : 65000, actual : 0
Timer : 13, programmed : 70000, actual : 0
Timer : 14, programmed : 75000, actual : 0
Timer : 15, programmed : 80000, actual : 0
SimpleTimer : 2, ms : 30236, Dms : 10054
Timer : 0, programmed : 5000, actual : 5000
Timer : 1, programmed : 10000, actual : 10000
Timer : 2, programmed : 15000, actual : 15000
Timer : 3, programmed : 20000, actual : 20009
Timer : 4, programmed : 25000, actual : 25009
Timer : 5, programmed : 30000, actual : 30009
Timer : 6, programmed : 35000, actual : 0
Timer : 7, programmed : 40000, actual : 0
Timer : 8, programmed : 45000, actual : 0
Timer : 9, programmed : 50000, actual : 0
Timer : 10, programmed : 55000, actual : 0
Timer : 11, programmed : 60000, actual : 0
Timer : 12, programmed : 65000, actual : 0
Timer : 13, programmed : 70000, actual : 0
Timer : 14, programmed : 75000, actual : 0
Timer : 15, programmed : 80000, actual : 0
SimpleTimer : 2, ms : 40290, Dms : 10054
Timer : 0, programmed : 5000, actual : 5000
Timer : 1, programmed : 10000, actual : 10000
Timer : 2, programmed : 15000, actual : 15000
Timer : 3, programmed : 20000, actual : 20000
Timer : 4, programmed : 25000, actual : 25009
Timer : 5, programmed : 30000, actual : 30009
Timer : 6, programmed : 35000, actual : 35009
Timer : 7, programmed : 40000, actual : 40009
Timer : 8, programmed : 45000, actual : 0
Timer : 9, programmed : 50000, actual : 0
Timer : 10, programmed : 55000, actual : 0
Timer : 11, programmed : 60000, actual : 0
Timer : 12, programmed : 65000, actual : 0
Timer : 13, programmed : 70000, actual : 0
Timer : 14, programmed : 75000, actual : 0
Timer : 15, programmed : 80000, actual : 0
SimpleTimer : 2, ms : 50345, Dms : 10055
Timer : 0, programmed : 5000, actual : 5000
Timer : 1, programmed : 10000, actual : 10000
Timer : 2, programmed : 15000, actual : 15000
Timer : 3, programmed : 20000, actual : 20000
Timer : 4, programmed : 25000, actual : 25000
Timer : 5, programmed : 30000, actual : 30009
Timer : 6, programmed : 35000, actual : 35009
Timer : 7, programmed : 40000, actual : 40009
Timer : 8, programmed : 45000, actual : 45009
Timer : 9, programmed : 50000, actual : 50009
Timer : 10, programmed : 55000, actual : 0
Timer : 11, programmed : 60000, actual : 0
Timer : 12, programmed : 65000, actual : 0
Timer : 13, programmed : 70000, actual : 0
Timer : 14, programmed : 75000, actual : 0
Timer : 15, programmed : 80000, actual : 0
SimpleTimer : 2, ms : 60401, Dms : 10056
Timer : 0, programmed : 5000, actual : 5000
Timer : 1, programmed : 10000, actual : 10000
Timer : 2, programmed : 15000, actual : 15000
Timer : 3, programmed : 20000, actual : 20000
Timer : 4, programmed : 25000, actual : 25000
Timer : 5, programmed : 30000, actual : 30000
Timer : 6, programmed : 35000, actual : 35009
Timer : 7, programmed : 40000, actual : 40009
Timer : 8, programmed : 45000, actual : 45009
Timer : 9, programmed : 50000, actual : 50009
Timer : 10, programmed : 55000, actual : 55009
Timer : 11, programmed : 60000, actual : 60009
Timer : 12, programmed : 65000, actual : 0
Timer : 13, programmed : 70000, actual : 0
Timer : 14, programmed : 75000, actual : 0
Timer : 15, programmed : 80000, actual : 0
SimpleTimer : 2, ms : 70458, Dms : 10057
Timer : 0, programmed : 5000, actual : 5000
Timer : 1, programmed : 10000, actual : 10000
Timer : 2, programmed : 15000, actual : 15000
Timer : 3, programmed : 20000, actual : 20000
Timer : 4, programmed : 25000, actual : 25000
Timer : 5, programmed : 30000, actual : 30000
Timer : 6, programmed : 35000, actual : 35000
Timer : 7, programmed : 40000, actual : 40009
Timer : 8, programmed : 45000, actual : 45009
Timer : 9, programmed : 50000, actual : 50009
Timer : 10, programmed : 55000, actual : 55009
Timer : 11, programmed : 60000, actual : 60009
Timer : 12, programmed : 65000, actual : 65009
Timer : 13, programmed : 70000, actual : 70009
Timer : 14, programmed : 75000, actual : 0
Timer : 15, programmed : 80000, actual : 0
SimpleTimer : 2, ms : 80515, Dms : 10057
Timer : 0, programmed : 5000, actual : 5000
Timer : 1, programmed : 10000, actual : 10000
Timer : 2, programmed : 15000, actual : 15000
Timer : 3, programmed : 20000, actual : 20000
Timer : 4, programmed : 25000, actual : 25000
Timer : 5, programmed : 30000, actual : 30000
Timer : 6, programmed : 35000, actual : 35000
Timer : 7, programmed : 40000, actual : 40000
Timer : 8, programmed : 45000, actual : 45009
Timer : 9, programmed : 50000, actual : 50009
Timer : 10, programmed : 55000, actual : 55009
Timer : 11, programmed : 60000, actual : 60009
Timer : 12, programmed : 65000, actual : 65009
Timer : 13, programmed : 70000, actual : 70009
Timer : 14, programmed : 75000, actual : 75009
Timer : 15, programmed : 80000, actual : 80009
SimpleTimer : 2, ms : 90573, Dms : 10058
Timer : 0, programmed : 5000, actual : 5000
Timer : 1, programmed : 10000, actual : 10000
Timer : 2, programmed : 15000, actual : 15000
Timer : 3, programmed : 20000, actual : 20000
Timer : 4, programmed : 25000, actual : 25000
Timer : 5, programmed : 30000, actual : 30000
Timer : 6, programmed : 35000, actual : 35000
Timer : 7, programmed : 40000, actual : 40000
Timer : 8, programmed : 45000, actual : 45000
Timer : 9, programmed : 50000, actual : 50009
Timer : 10, programmed : 55000, actual : 55009
Timer : 11, programmed : 60000, actual : 60009
Timer : 12, programmed : 65000, actual : 65009
Timer : 13, programmed : 70000, actual : 70009
Timer : 14, programmed : 75000, actual : 75009
Timer : 15, programmed : 80000, actual : 80009



Debug

Debug is enabled by default on Serial.

You can also change the debugging level (TIMERINTERRUPT_LOGLEVEL) from 0 to 4

// These define's must be placed at the beginning before #include "ESP32TimerInterrupt.h"
// _TIMERINTERRUPT_LOGLEVEL_ from 0 to 4
// Don't define _TIMERINTERRUPT_LOGLEVEL_ > 0. Only for special ISR debugging only. Can hang the system.
#define TIMER_INTERRUPT_DEBUG         0
#define _TIMERINTERRUPT_LOGLEVEL_     0

Troubleshooting

If you get compilation errors, more often than not, you may need to install a newer version of the core for Arduino boards.

Sometimes, the library will only work if you update the board core to the latest version because I am using newly added functions.



Releases

Releases v1.4.0

  1. Fix compiler errors due to conflict to some libraries.
  2. Add complex examples.

Releases v1.3.0

  1. Add support to ESP32-S2 and ESP32-C3
  2. Add support to new ESP32 core v1.0.6
  3. Update examples

Releases v1.2.0

  1. Add better debug feature.
  2. Optimize code and examples to reduce RAM usage

Releases v1.1.1

  1. Add Change_Interval example to show how to change TimerInterval on-the-fly
  2. Add Version String and Change_Interval example to show how to change TimerInterval

Releases v1.1.0

  1. Restore cpp code besides Impl.h code to use if Multiple-Definition linker error.
  2. Update examples.
  3. Enhance README.

Releases v1.0.3

  1. Restructure code.
  2. Add examples.
  3. Enhance README.

Releases v1.0.2

  1. Permit up to 16 super-long-time, super-accurate ISR-based timers to avoid being blocked

Releases v1.0.0

  1. Initial coding


Issues

Submit issues to: ESP32TimerInterrupt issues


TO DO

  1. Search for bug and improvement.

DONE

  1. Basic hardware timers for ESP32.
  2. More hardware-initiated software-enabled timers
  3. Longer time interval
  4. Similar features for remaining Arduino boards such as SAMD21, SAMD51, SAM-DUE, nRF52, ESP8266, STM32, etc.
  5. Add support to new ESP32-S2
  6. Add support to new ESP32 core v1.0.6
  7. Fix compiler errors due to conflict to some libraries.
  8. Add complex examples.


Contributions and Thanks

Many thanks for everyone for bug reporting, new feature suggesting, testing and contributing to the development of this library.

  1. Thanks to Jelmer to report and make PR in Moved the implementation header file to a separate .cpp file leading to new Version v1.1.0.
jjwbruijn
Jelmer


Contributing

If you want to contribute to this project:

  • Report bugs and errors
  • Ask for enhancements
  • Create issues and pull requests
  • Tell other people about this library

License

  • The library is licensed under MIT

Copyright

Copyright 2019- Khoi Hoang