/euler

Random Project Euler problems mostly to pickup new languages and tools

Primary LanguagePython

Goldbach's other conjecture

Problem 46 (Used Vim)

It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square.

It turns out that the conjecture was false.

What is the smallest odd composite that cannot be written as the sum of a prime and twice a square?

Solution is 5777

Lychrel numbers

Problem 55 (Used Python and Vim)

If we take 47, reverse and add, 47 + 74 = 121, which is palindromic.

Not all numbers produce palindromes so quickly. For example,

349 + 943 = 1292,
1292 + 2921 = 4213
4213 + 3124 = 7337

That is, 349 took three iterations to arrive at a palindrome.

Although no one has proved it yet, it is thought that some numbers, like 196, never produce a palindrome. A number that never forms a palindrome through the reverse and add process is called a Lychrel number. Due to the theoretical nature of these numbers, and for the purpose of this problem, we shall assume that a number is Lychrel until proven otherwise. In addition you are given that for every number below ten-thousand, it will either (i) become a palindrome in less than fifty iterations, or, (ii) no one, with all the computing power that exists, has managed so far to map it to a palindrome. In fact, 10677 is the first number to be shown to require over fifty iterations before producing a palindrome: 4668731596684224866951378664 (53 iterations, 28-digits).

Surprisingly, there are palindromic numbers that are themselves Lychrel numbers; the first example is 4994.

How many Lychrel numbers are there below ten-thousand?

Execution time for regular implementation 0.28841s

Execution time for parallelized implementation 0.226910s

Execution time for hashed implementation 0.887396s (What? Why? 😶)

Solution is 249