The goal of tidycode is to allow users to analyze R expressions in a tidy way.
You can install tidycode from CRAN with:
install.packages("tidycode")
You can install the development version of tidycode from github with:
# install.packages("remotes")
remotes::install_github("LucyMcGowan/tidycode")
Using the matahari package, we can read in existing code, either as a
string or a file, and turn it into a matahari tibble using
matahari::dance_recital()
.
code <- "
library(broom)
library(glue)
m <- lm(mpg ~ am, data = mtcars)
t <- tidy(m)
glue_data(t, 'The point estimate for term {term} is {estimate}.')
"
m <- matahari::dance_recital(code)
Alternatively, you may already have a matahari tibble that was recorded during an R session.
Load the tidycode library.
library(tidycode)
We can use the expressions from this matahari tibble to extract the names of the packages included.
(pkg_names <- ls_packages(m$expr))
#> [1] "broom" "glue"
Create a data frame of your expressions, splitting each into individual functions.
u <- unnest_calls(m, expr)
Add in the function classifications!
u %>%
dplyr::inner_join(
get_classifications("crowdsource", include_duplicates = FALSE)
)
#> Joining, by = "func"
#> # A tibble: 8 x 8
#> value error output warnings messages func args classification
#> <list> <list> <list> <list> <list> <chr> <list> <chr>
#> 1 <chr [8]> <NULL> <chr [1… <chr [1… <chr [0… libra… <list… setup
#> 2 <chr [9]> <NULL> <chr [1… <chr [1… <chr [0… libra… <list… setup
#> 3 <lm> <NULL> <chr [1… <chr [0… <chr [0… <- <list… data cleaning
#> 4 <lm> <NULL> <chr [1… <chr [0… <chr [0… lm <list… modeling
#> 5 <lm> <NULL> <chr [1… <chr [0… <chr [0… ~ <list… modeling
#> 6 <tibble [… <NULL> <chr [1… <chr [0… <chr [0… <- <list… data cleaning
#> 7 <tibble [… <NULL> <chr [1… <chr [0… <chr [0… tidy <list… modeling
#> 8 <glue> <NULL> <chr [1… <chr [0… <chr [0… glue_… <list… communication
We can also remove a list of “stopwords”. We have a function,
get_stopfuncs()
that lists common “stopwords”, frequently used
operators, like %>%
and +
.
u %>%
dplyr::inner_join(
get_classifications("crowdsource", include_duplicates = FALSE)
) %>%
dplyr::anti_join(get_stopfuncs()) %>%
dplyr::select(func, classification)
#> Joining, by = "func"
#> Joining, by = "func"
#> # A tibble: 5 x 2
#> func classification
#> <chr> <chr>
#> 1 library setup
#> 2 library setup
#> 3 lm modeling
#> 4 tidy modeling
#> 5 glue_data communication