/naifu-diffusion

Train stable diffusion model with Diffusers, Hivemind and Pytorch Lightning

Primary LanguagePythonMIT LicenseMIT

Naifu Diffusion

Naifu Diffusion is the name for this project of finetuning Stable Diffusion on images and captions.

This branch is aiming to train stable diffusion model stably with diffusers. To make use of all new features, such as SDXL Training and efficient/experiment strategies, checkout sgm branch.

Colab demo: https://colab.research.google.com/drive/1Xf1tnsP4fu8y5MoYbK1pz08jmyMiTrvv

Features

The trainer has integrated several features:

  • Aspect Ratio Bucket and Custom Batch
  • Utilizing Hidden States of CLIP’s Penultimate Layer
  • Nai-style Tag Processing (w/ Tag Fliter and Cliper)
  • Extending the Stable Diffusion Token Limit by 3x
  • Lora/Locon Training
  • Min-SNR Weighting Strategy
  • Offset Noise and Input Perturbation

Usage

Clone repo

git clone https://github.com/Mikubill/naifu-diffusion
cd naifu-diffusion

Fulfill deps

# by conda
conda env create -f environment.yaml
conda activate nd

# OR by pip
pip install -r requirements.txt

Start training.

# test
python trainer.py --config train.yaml

Experiments

Train LoRA

python trainer.py --config experiment/lora.yaml

## extract 
python experiment/extract_lora.py --src last.ckpt

Train LoCon

python trainer.py --config experiment/locon.yaml

## extract 
python experiment/extract_lora.py --src last.ckpt

Train Textual Inversion

python trainer.py --config experiment/textual_inversion.yaml

Convert any checkpoint to safetensors

python scripts/sd_to_safetensors.py --src input.ckpt --dst output.safetensors