Cascade R-CNN: Delving into High Quality Object Detection
by Zhaowei Cai and Nuno Vasconcelos
This repository is written by Zhaowei Cai at UC San Diego, on the base of Detectron @ e8942c8.
Introduction
This repository re-implements Cascade R-CNN on the base of Detectron. Very consistent gains are available for all tested models, regardless of baseline strength.
This repository is still under construction. Will be updated very soon!
Citation
If you use our code/model/data, please cite our paper:
@inproceedings{cai18cascadercnn,
author = {Zhaowei Cai and Nuno Vasconcelos},
Title = {Cascade R-CNN: Delving into High Quality Object Detection},
booktitle = {CVPR},
Year = {2018}
}
and Detectron:
@misc{Detectron2018,
author = {Ross Girshick and Ilija Radosavovic and Georgia Gkioxari and
Piotr Doll\'{a}r and Kaiming He},
title = {Detectron},
howpublished = {\url{https://github.com/facebookresearch/detectron}},
year = {2018}
}
Benchmarking
End-to-End Faster & Mask R-CNN Baselines
backbone | type | lr schd |
im/ gpu |
box AP |
box AP50 |
box AP75 |
mask AP |
mask AP50 |
mask AP75 |
download links |
---|---|---|---|---|---|---|---|---|---|---|
R-50-FPN-baseline | Faster | 1x | 2 | 36.7 | - | - | - | - | - | model | boxes |
R-50-FPN-cascade | Faster | 1x | 2 | 40.9 | 59.0 | 44.6 | - | - | - | model | boxes |
R-101-FPN-baseline | Faster | 1x | 2 | 39.4 | - | - | - | - | - | model | boxes |
R-101-FPN-cascade | Faster | 1x | 2 | 42.8 | 61.4 | 46.1 | - | - | - | model | boxes |
X-101-64x4d-FPN-baseline | Faster | 1x | 1 | 41.5 | - | - | - | - | - | model | boxes |
X-101-64x4d-FPN-cascade | Faster | 1x | 1 | 45.4 | 64.0 | 49.8 | - | - | - | model | boxes |
X-101-32x8d-FPN-baseline | Faster | 1x | 1 | 41.3 | - | - | - | - | - | model | boxes |
X-101-32x8d-FPN-cascade | Faster | 1x | 1 | 44.7 | 63.7 | 48.8 | - | - | - | model | boxes |
R-50-FPN-baseline | Mask | 1x | 2 | 37.7 | - | - | 33.9 | - | - | model | boxes | masks |
R-50-FPN-cascade | Mask | 1x | 2 | 41.3 | 59.6 | 44.9 | 35.4 | 56.2 | 37.8 | model | boxes | masks |
R-101-FPN-baseline | Mask | 1x | 2 | 40.0 | - | - | 35.9 | - | - | model | boxes | masks |
R-101-FPN-cascade | Mask | 1x | 2 | - | - | - | - | - | - | model | boxes | masks |
X-101-64x4d-FPN-baseline | Mask | 1x | 1 | 42.4 | - | - | 37.5 | - | - | model | boxes | masks |
X-101-64x4d-FPN-cascade | Mask | 1x | 1 | 45.9 | 64.4 | 50.2 | 38.8 | 61.3 | 41.6 | model | boxes | masks |
X-101-32x8d-FPN-baseline | Mask | 1x | 1 | 42.1 | - | - | 37.3 | - | - | model | boxes | masks |
X-101-32x8d-FPN-cascade | Mask | 1x | 1 | 45.8 | 64.1 | 50.3 | 38.6 | 60.6 | 41.5 | model | boxes | masks |
Mask R-CNN with Bells & Whistles
backbone | type | lr schd |
im/ gpu |
box AP |
box AP50 |
box AP75 |
mask AP |
mask AP50 |
mask AP75 |
download links |
---|---|---|---|---|---|---|---|---|---|---|
X-152-32x8d-FPN-IN5k-baseline | Mask | s1x | 1 | 48.1 | - | - | 41.5 | - | - | model | boxes | masks |
[above without test-time aug.] | 45.2 | - | - | 39.7 | - | - | ||||
X-152-32x8d-FPN-IN5k-cascade | Mask | s1x | 1 | 50.2 | 68.2 | 55.0 | 42.3 | 65.4 | 45.8 | model | boxes | masks |
[above without test-time aug.] | 48.1 | 66.7 | 52.6 | 40.7 | 63.7 | 43.8 |