Here we provide the dataset of New York for reproducibility, and the image data can be downloaded from here.
After downloading the data, copy "zl15_224" into "./data/satellite_image/" folder and copy "Region" into "./data/streetview_image/" folder.
To run the contrastive learning model for satellite imagery at Step 1, execute the following command:
CUDA_VISIBLE_DEVICES=0 python main.py --dataset new_york --model_name Pair_CLIP_SI --n_gcn_layer 2 --lr 0.0003 --batch_size 128
To run the contrastive learning model for street view imagery at Step 1, execute the following command:
CUDA_VISIBLE_DEVICES=0 python main.py --dataset new_york --model_name Pair_CLIP_SV --n_gcn_layer 2 --lr 0.0003 --batch_size 16
To reproduce the population prediction results, execute the following commands:
CUDA_VISIBLE_DEVICES=0 python mlp.py --indicator pop --dataset new_york --model_name Pair_CLIP_SI --KnowCLgcn 2 --KnowCLlr 0.0003 --KnowCLbatchsize 128 --KnowCLepoch 100 --lr 0.001 --drop_out 0.3 --wd 1.0
CUDA_VISIBLE_DEVICES=0 python mlp.py --indicator pop --dataset new_york --model_name Pair_CLIP_SV --KnowCLgcn 2 --KnowCLlr 0.0003 --KnowCLbatchsize 16 --KnowCLepoch 100 --lr 0.005 --drop_out 0.1 --wd 0.0
To reproduce the education prediction results, execute the following commands:
CUDA_VISIBLE_DEVICES=0 python mlp.py --indicator edu --dataset new_york --model_name Pair_CLIP_SI --KnowCLgcn 2 --KnowCLlr 0.0003 --KnowCLbatchsize 128 --KnowCLepoch 100 --lr 0.001 --drop_out 0.3 --wd 1.0
CUDA_VISIBLE_DEVICES=0 python mlp.py --indicator edu --dataset new_york --model_name Pair_CLIP_SV --KnowCLgcn 2 --KnowCLlr 0.0003 --KnowCLbatchsize 16 --KnowCLepoch 100 --lr 0.001 --drop_out 0.5 --wd 0.1
To reproduce the crime prediction results, execute the following commands:
CUDA_VISIBLE_DEVICES=0 python mlp.py --indicator crime --dataset new_york --model_name Pair_CLIP_SI --KnowCLgcn 2 --KnowCLlr 0.0003 --KnowCLbatchsize 128 --KnowCLepoch 100 --lr 0.0005 --drop_out 0.5 --wd 0.0
CUDA_VISIBLE_DEVICES=0 python mlp.py --indicator crime --dataset new_york --model_name Pair_CLIP_SV --KnowCLgcn 2 --KnowCLlr 0.0003 --KnowCLbatchsize 16 --KnowCLepoch 100 --lr 0.001 --drop_out 0.1 --wd 0.0
dgl==1.0.0
dgl_cu102==0.6.1
numpy==1.21.6
pandas==1.3.5
Pillow==9.4.0
scikit_learn==1.2.1
torch==1.9.0+cu111
torchvision==0.10.0+cu111
tqdm==4.64.1
python==3.7.13
@inproceddings{liu2023knowcl,
title = {Knowledge-infused Contrastive Learning for Urban Imagery-based Socioeconomic Prediction},
author = {Liu, Yu and Zhang, Xin and Ding, Jingtao and Xi, Yanxin and Li, Yong},
booktitle = {The Web Conference},
year = {2023}}