/SOM

SOM - Self-organizing map

Primary LanguageCGNU General Public License v3.0GPL-3.0

SOM

SOM - Self-organizing map

A self-organizing map (SOM) or self-organizing feature map (SOFM) is a type of artificial neural network (ANN) that is trained using unsupervised learning to produce a low-dimensional (typically two-dimensional), discretized representation of the input space of the training samples, called a map, and is therefore a method to do dimensionality reduction. Self-organizing maps differ from other artificial neural networks as they apply competitive learning as opposed to error-correction learning (such as backpropagation with gradient descent), and in the sense that they use a neighborhood function to preserve the topological properties of the input space.

the iris dataset

In this case study is performed on the famous (Fisher's or Anderson's) iris data set that gives the measurements in centimeters of the variables sepal length and width and petal length and width, respectively, for 50 flowers from each of 3 species of iris (setosa, versicolor, and virginica).

for compile:
make

for clean:
make clean

for run:
./som

alt tag