/pytorch-bms

Kaggle | 9th place (part of) solution for the Bristol-Myers Squibb – Molecular Translation challenge

Primary LanguagePython

Part of the 9th place solution for the Bristol-Myers Squibb – Molecular Translation challenge translating images containing chemical structures into InChI (International Chemical Identifier) texts.

This repo is partially based on the following resources:

Requirements

  • install and activate the conda environment
  • download and extract the data into /data/bms/
  • extract and move sample_submission_with_length.csv.gz into /data/bms/
  • tokenize training inputs: python datasets/prepocess2.py
  • if you want to use pseudo labeling, execute: python datasets/pseudo_prepocess2.py your_submission_file.csv
  • if you want to use external images, you can create with the following commands:
python r09_create_images_from_allowed_inchi.py
python datasets/extra_prepocess2.py 
  • and also install apex

Training

This repo supports training any VIT/SWIN/CAIT transformer models from timm as encoder together with the fairseq transformer decoder.

Here is an example configuration to train a SWIN swin_base_patch4_window12_384 as encoder and 12 layer 16 head fairseq decoder:

python -m torch.distributed.launch --nproc_per_node=N train.py --logdir=logdir/ \
    --pipeline --train-batch-size=50 --valid-batch-size=128 --dataload-workers-nums=10 --mixed-precision --amp-level=O2  \
    --aug-rotate90-p=0.5 --aug-crop-p=0.5 --aug-noise-p=0.9 --label-smoothing=0.1 \
    --encoder-lr=1e-3 --decoder-lr=1e-3 --lr-step-ratio=0.3 --lr-policy=step --optim=adam --lr-warmup-steps=1000 --max-epochs=20 --weight-decay=0 --clip-grad-norm=1 \
    --verbose --image-size=384 --model=swin_base_patch4_window12_384 --loss=ce --embed-dim=1024 --num-head=16 --num-layer=12 \
    --fold=0 --train-dataset-size=0 --valid-dataset-size=65536 --valid-dataset-non-sorted

For pseudo labeling, use --pseudo=pseudo.pkl. If you want subsample the pseudo dataset, use: --pseudo-dataset-size=448000. For using external images, use --extra (--extra-dataset-size=448000).

After training, you can also use Stochastic Weight Averaging (SWA) which gives a boost around 0.02:

python swa.py --image-size=384 --input logdir/epoch-17.pth,logdir/epoch-18.pth,logdir/epoch-19.pth,logdir/epoch-20.pth

Inference

Evaluation:

python -m torch.distributed.launch --nproc_per_node=N eval.py --mixed-precision --batch-size=128 swa_model.pth

Inference:

python -m torch.distributed.launch --nproc_per_node=N inference.py --mixed-precision --batch-size=128 swa_model.pth

Normalization with RDKit:

./normalize_inchis.sh submission.csv