/precipitation_forecasts_conv-lstm

Train a LSTM with Convolutions Inputs processed by Conv-ReLU-Max-Batch architecture, on over 3000 precipitation images/maps for the US.

Primary LanguagePython

title author date output
Conv lstm
Lukio
24 January 2019
html_document word_document
default
default
library(reticulate)
use_condaenv(condaenv="my_py3.5_environ",conda="C:/Users/jolweny/AppData/Local/rodeo/app-2.5.2/resources/conda/conda.exe")
use_condaenv(condaenv="my_py3.5_environ",required=T)

##use_python("/AppData/Local/rodeo/app-2.5.2/resources/conda/envs/my_py3.5_environ/python") ##use_condaenv(condaenv="my_py3.5_environ",conda="/AppData/Local/rodeo/app-2.5.2/resources/conda")

R Markdown

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

When you click the Knit button a document will be generated that includes both content as well as the output of any embedded R code chunks within the document. You can embed an R code chunk like this:

summary(cars)

Including Plots

You can also embed plots, for example:

plot(pressure)

Note that the echo = FALSE parameter was added to the code chunk to prevent printing of the R code that generated the plot.

an image caption Source: Ultimate Funny Dog Videos Compilation 2013.

import pandas
import numpy as np
import matplotlib.pyplot as plt
flights= pandas.read_csv("flights.csv")
flights=flights[flights['DEST_STATE_NM']=="Illinois"]
flights= flights[['OP_UNIQUE_CARRIER', 'DEP_DELAY', 'ARR_DELAY']]
flights= flights.dropna()
plt.plot(flights['OP_UNIQUE_CARRIER'],flights['ARR_DELAY'])
print(flights.head())
plt.show()

you can use py$flights

library(ggplot2)
ggplot(py$flights,aes(OP_UNIQUE_CARRIER,ARR_DELAY))+ geom_point()+geom_jitter()

#Calling R from Python- access R object in python

library(tidyverse)
flights= read_csv("flights.csv") %>%
 filter(DEST_STATE_NM=="Illinois")%>%
 select(OP_UNIQUE_CARRIER,DEP_DELAY,ARR_DELAY)%>%
 na.omit()
library(ggplot2)
head(flights)
ggplot(flights,aes(OP_UNIQUE_CARRIER,ARR_DELAY))+ geom_point()+geom_jitter()
print(r.flights.head())
data(cars)
# Small fig.width
ggplot(cars, aes(speed, dist)) + geom_point()