ImageNet Classification with Deep Convolutional Neural Networks.pdf
深度学习兴起的引子
Very Deep Convolutional Networks for Large-Scale Image Recognition
使用 3*3 卷积减少参数量的深层网络
- Inception-V1: Going Deeper with Convolutions
- Inception-V2: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
- Inception-V3: Rethinking the Inception Architecture for Computer Vision
- Inception-V4: Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, 即 inception-resnet
- Xception: Xception: Deep Learning with Depthwise Separable Convolutions
Densely Connected Convolutional Networks
何恺明个人主页http://kaiminghe.com/
-
ResNet: Deep Residual Learning for Image Recognition 2015
-
ResNeXt: Aggregated Residual Transformations for Deep Neural Networks 2017
-
SE-ResNet & SE-ResNeXt: Squeeze-And-Excitation Networks 2018
- MobileNet-V1: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
- MobileNet: 可以牺牲少量性能来大幅降低网络的计算量
- 将标准卷积转化为深度可分离卷积(depthwise conv + pointwise conv),depthwise conv只在单一通道上进行卷积,提取特征,pointwise conv 为11N的卷积,将不同通道的特征连接起来,产生新的特征; 定义了两个超参 \alpha 和 \rho 用于进一步缩减网络,分别是宽度乘数和分辨率乘数,用于减少通道数和输入图像的大小,范围为(0,1);
- MobileNet 可以用于分类、检测、识别等各个领域,适用于移动端和嵌入式端
- MobileNet-V2: MobileNetV2: Inverted Residuals and Linear Bottlenecks
- ShuffleNet-V1: ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices
- ShuffleNet-V2: ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design
-
AM-Softmax
- Additive Margin Softmax for Face Verification
- github caffe tensorflow
-
A-Softmax
-
L-Softmax
-
ArcFace
-
Triplet loss
-
Lovász-Softmax loss
- RCNN Rich feature hierarchies for accurate object detection and semantic segmentation
- Fast-RCNN Fast R-CNN
- Faster R-CNN Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks
- RetinaNet-Focal Loss Focal Loss for Dense Object Detection
- Mask-RCNN Mask R-CNN
- YOLO
- YOLOv3: An Incremental Improvement: YOLO-V3, 检测速度极大提升
- SSD: Single Shot MultiBox Detector:
- FaceBoxes: A CPU Real-time Face Detector with High Accuracy
- 人脸检测的小网络,可以做到CPU实时,用到了SSD的**
- github
- Finding Tiny Faces: 小目边检测最好的方法,但是速度极慢
- An Analysis of Scale Invariance in Object Detection – SNIP: 小目标检测相关
- Generalized Intersection over Union: A Metric and A Loss for Bounding BoxRegression: 提出一种新的IOU计算方法
- FCNN
- Fully Convolutional Networks for Semantic Segmentation: 用于语义分割的全卷积神经网络,开启使用卷积神经网络进行语义分割的先河;
- 2019年最新人脸识别综述 Deep Face Recognition: A Survey
- 人脸识别的 one-shot learning 问题解决方案,earhian 推荐 One-shot Face Recognition by Promoting Underrepresented Classes
上采样的优点
batch的优点
数据蒸馏,一种使用无标签数据训练的全方位学习方法,在Kaggle等大数据竞赛中非常有用
No-reference Image Quality Assessment 相关论文,包括人脸姿态估计
四川大学深度学习500问,包含了深度学习数学基础、经典框架、常见问题等 github