Repository for seraching optimal bee-sound represenation with use of Autoencoders:
- Vanilla Autoencoder (ae)
- Convolutional Autoencoder (conv_ae)
- Variational Autoencoder (vae)
- Convolutional Autoencoder (conv_vae)
- Contrastive Autoencoder (cvae)
- Contrastive Convolutional Autoencoder (conv_cvae)
and sound representation features:
- Periodogram (periodogram)
- spectrogram (spectrogram)
- MelSpectrogram (melspectrogram)
- MFCC (mfcc)
- Bioacustic indicies (indicies)
- Acustic Complexity Index (aci - configured by config.json)
- Acoustic Diversity Index (adi - configured by config.json)
- Acoustic Evenness Index (aei - configured by config.json)
- Bioacustic Index (bi - configured by config.json)
train.py scripts trains choosen architecture with use config from json file. E.g. command will invoke training Variational Autoencoder on periodogram data.
python train.py vae periodogram ..\\measurements\\smartulav2 --config_file=example_config.json
user should specify target and background data through options
python train.py vae periodogram ..\\measurements\\smartulav2 --config_file=example_config.json --target smrpiclient6 --background smrpiclient3 smrpiclient7
also there is option to use discriminator in contrastive training by using --discriminator
option