/BeeDNN

A fast DNN library in C++, and a version in Python for prototyping

Primary LanguageC++OtherNOASSERTION

BeeDNN

BeeDNN is a deep learning library.

The git repository is https://github.com/edeforas/BeeDNN

The API is clear and simple, the goal is that every C++ developer can contribute, test, and use Deep Neural Network. BeeDNN can run on small devices. It is even possible to learn directly on the device.

Please see at: https://github.com/edeforas/BeeDNN/issues for contributing ideas. No dependencies needed, every algorithm rewritten in C++ from scratch. To increase speed, ones can choose the Eigen library (http://eigen.tuxfamily.org), instead of the internal matrix library.

Initializers:

  • GlorotUniform, GlorotNormal
  • HeUniform, HeNormal
  • LecunUniform, LecunNormal
  • Zeros, Ones

Layers:

  • Dense (with bias), Dot (without bias)
  • GlobalGain, GlobalBias, GlobalAffine, Gain, Bias, Affine
  • Softmax, Softmin
  • PRelu, RRelu, PELU, TERELU, CRelu
  • Layers and activations are decoupled and can be in any order

Time series:

  • TimeDistributedBias
  • TimeDistributedDot
  • TimeDistributedDense
  • WIP

2D layers:

  • Convolution2D, ChannelBias
  • MaxPool2D, GlobalMaxPool2D,
  • AveragePooling2D, GlobalAveragePooling2D
  • ZeroPadding2D

Activations (in alphabetical order):

  • Absolute, Asinh, Atan
  • Bent, BinaryStep, Bipolar, BipolarSigmoid, Bump
  • ComplementaryLogLog, CELU
  • dSiLU
  • ELiSH, Elliot, ELU, Exponential, E2RU, E3RU, Eswish
  • FTS, FTS+
  • Gauss, GELU
  • HardELU, HardSigmoid, HardShrink, HardTanh, HardSwish, Hann
  • ISRELU
  • Linear, LeakyRelu, LeakyRelu256, LecunTanh, LiSHT, Logit, LogSigmoid
  • Mish
  • NLRelu
  • O2RU, O3RU
  • SmoothSoftPlus
  • SmoothTanh
  • SmoothSigmoid
  • Relu, Relu6
  • Selu, SQNL, SQ-RBF, SoftPlus, Sin, SinC, Sigmoid, SiLU, Swish, SoftShrink, SoftSign, SoftSteps, SineReLU
  • Tanh, TanhExp, TanhShrink, ThresholdedRelu,TwiceLeakyRelu6

Loss functions:

  • MeanSquareError, MeanAbsoluteError, MeanCubicError
  • L2, L1, L3
  • LogCosh
  • Huber, PseudoHuber
  • SparseCategoricalCrossEntropy, CategoricalCrossEntropy, BinaryCrossEntropy

Overfitting:

  • Layers: Dropout, GaussianNoise, GaussianDropout, UniformNoise
  • Regularizer: GradientClip, GradientNormClip, GradientClipTanh, L1, L2, L1L2

Data augmentation

  • RandomFlip

Learning and optimization:

  • Classification or regression, test and/or learn
  • SGD, Momentum, MomentumNg, Nesterov
  • Adam, AdamW, Nadam
  • Adagrad
  • Adamax
  • Amsgrad
  • RMSprop
  • RPROP-, iRPROP-
  • MetaOptimizer (V1)
  • Class balancing if needed
  • Keep best model vs epochs
  • LearnMore mode
  • Reboost mode

KMeans:

  • can use any loss
  • batchmode learning

I/O:

  • MNIST reader
  • CIFAR10 reader
  • csv file reader
  • model, weights and training parameters are saved in a simple .json file

Precomputing:

  • StandardScaler, MinMaxScaler

Commented samples:

  • Simple XOR classification, with and w/o softmax
  • Simple sinus regression
  • MNIST with dense net
  • MNIST using time serie (a time frame is an image row)
  • MNIST with poolmax2D
  • MNIST all convolutional
  • MNIST and Meta Optimizer: select best activation
  • CIFAR10 conv2D using poolmax2D
  • MNIST with kmeans and custom loss

Build with vs2019 or CMake. To compile, run the samples, etc, please read the HOWTO.md file