uammy's Stars
papers-we-love/papers-we-love
Papers from the computer science community to read and discuss.
gin-gonic/gin
Gin is a HTTP web framework written in Go (Golang). It features a Martini-like API with much better performance -- up to 40 times faster. If you need smashing performance, get yourself some Gin.
kenjihiranabe/The-Art-of-Linear-Algebra
Graphic notes on Gilbert Strang's "Linear Algebra for Everyone"
chenzomi12/AISystem
AISystem 主要是指AI系统,包括AI芯片、AI编译器、AI推理和训练框架等AI全栈底层技术
maemual/raft-zh_cn
Raft一致性算法论文的中文翻译
timeseriesAI/tsai
Time series Timeseries Deep Learning Machine Learning Python Pytorch fastai | State-of-the-art Deep Learning library for Time Series and Sequences in Pytorch / fastai
biolab/orange3
🍊 :bar_chart: :bulb: Orange: Interactive data analysis
kf-liu/The-Art-of-Linear-Algebra-zh-CN
Graphic notes on Gilbert Strang's "Linear Algebra for Everyone", 线性代数的艺术中文版, 欢迎PR.
AllenDowney/ThinkDSP
Think DSP: Digital Signal Processing in Python, by Allen B. Downey.
divamgupta/image-segmentation-keras
Implementation of Segnet, FCN, UNet , PSPNet and other models in Keras.
Alro10/deep-learning-time-series
List of papers, code and experiments using deep learning for time series forecasting
WassimTenachi/PhySO
Physical Symbolic Optimization
WXinlong/SOLO
SOLO and SOLOv2 for instance segmentation, ECCV 2020 & NeurIPS 2020.
willemt/raft
C implementation of the Raft Consensus protocol, BSD licensed
luyanger1799/Amazing-Semantic-Segmentation
Amazing Semantic Segmentation on Tensorflow && Keras (include FCN, UNet, SegNet, PSPNet, PAN, RefineNet, DeepLabV3, DeepLabV3+, DenseASPP, BiSegNet)
JusperLee/Conv-TasNet
Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation Pytorch's Implement
BBuf/Keras-Semantic-Segmentation
Keras-Semantic-Segmentation
NVlabs/FreeSOLO
FreeSOLO for unsupervised instance segmentation, CVPR 2022
broadinstitute/keras-resnet
Keras package for deep residual networks
Golbstein/Keras-segmentation-deeplab-v3.1
An awesome semantic segmentation model that runs in real time
gamedilong/SoftwareArchitect-CN
软件架构师之路
lsh1994/keras-segmentation
Get started with Semantic Segmentation based on Keras, including FCN32/FCN8/SegNet/U-Net
vision9527/paxos
paxos for studying
feiyanke/thinkdsp-cn
《ThinkDSP》 中文翻译,http://thinkdsp-cn.readthedocs.io/zh_CN/latest/
66my/-PhySO-
这是物理学公式拟合工具 PhySO(Φ-SO)库的中文注释项目,帮助需要快速入门此工具的**科研人员初步熟悉该工具的使用
QiaoXiao7282/DSN
[NeurIPS 22'] Dynamic Sparse Network for Time Series Classification: Learning What to “See”
DarLiner/awesome-design-patterns
优秀软件与架构设计模式资源收集。包含10种常见的软件架构模式、GoF设计模式、云架构模式、微服务和分布式系统、大数据、数据库等
yujiacheng333/Conv_TasNet
Conv TaSNet follow work of KaiTuo Xu in TF-keras
RayGle0628/GoCode-Go-
现今,多核CPU已经成为服务器的标配。但是对多核的运算能力挖掘一直由程序员人工设计算法及框架来完成。这个过程需要开发人员具有一定的并发设计及框架设计能力。虽然一些编程语言的框架在不断地提高多核资源使用效率,如Java的Netty等,但仍然需要开发人员花费大量的时间和精力搞懂这些框架的运行原理后才能熟练掌握。 Go语言在多核并发上拥有原生的设计优势。Go语言从2009年11月开源,2012年发布Go 1.0稳定版本以来,已经拥有活跃的社区和全球众多开发者,并且与苹果公司的Swift一样,成为当前非常流行的开发语言之一。很多公司,特别是**的互联网公司,即将或者已经完成了使用Go语言改造旧系统的过程。经过Go语言重构的系统能使用更少的硬件资源而有更高的并发和I/O吞吐表现。 Go语言简单易学,学习曲线平缓,不需要像C/C++语言动辄需要两到三年的学习期。Go语言被称为“互联网时代的C语言”。互联网的短、频、快特性在Go语言中体现得淋漓尽致。一个熟练的开发者只需要短短的一周时间就可以从学习阶段转到开发阶段,并完成一个高并发的服务器开发。 面对Go语言的普及和学习热潮,这份代码介绍了GO语言从基础的语法知识到并发和接口等新特性知识。
Rossil2012/simulRaft
A Stand-alone Simulation of RAFT Cluster with Qt