We support running the experiments via the provided Docker image.
- Pull the docker image:
docker pull ghcr.io/robotology/mask-ukf:latest
- Launch the container:
docker run -it --rm --user user --env="DISPLAY" --net=host ghcr.io/robotology/mask-ukf:latest
- Clone and build the project:
git clone https://github.com/robotology/mask-ukf.git cd mask-ukf mkdir build && cd build cmake ../ make
- Download and unzip the accompanying data and the YCB-Video model set:
cd /home/user/mask-ukf bash misc/download_accompanying_data.sh bash misc/download_ycb_models.sh
- Run the experiments (optional):
cd /home/user/mask-ukf bash test/test_all.sh
The accompanying data contains the pre-evaluated results. If desired, the results can be re-evaluated using the above command.
- Run the evaluation:
cd /home/user/mask-ukf bash evaluation/evaluate_<mask_set>_<metric>_<algorithm>.sh
<mask_set>
can bemrcnn
(Mask R-CNN) orposecnn
(PoseCNN),<metric>
can beadd_s
(ADD-S) orrmse
(RMSE) and<algorithm>
can be empty (MaskUKF),icp
(ICP) ordensefusion
(DenseFusion). - Visualize the results:
cd /home/user/mask-ukf python3 evaluation/renderer/renderer.py --algorithm <algorithm> --mask_set <mask_set> --object <object_name> --video_id <video_id>
<algorithm>
can bemask-ukf
(MaskUKF),icp
(ICP) ordense_fusion
(DenseFusion),<mask_set>
is as above,<object_name>
is e.g.002_master_chef_can
and<video_id>
is the YCB-Video video id, e.g.0048
.
In order to run the visualizer it could be required to temporarily execute
xhost +
in a console outside of Docker in order to allow the container accessing the X server facilities. The command can be run even after the container has been already launched.
If you want to install the repository manually, please refer to the recipe contained in the
Dockerfile
. Please be aware that the results might differ if unsupported versions of the dependencies are used.
If you find the MaskUKF code useful, please consider citing the associated publication:
@ARTICLE{10.3389/frobt.2021.594583,
AUTHOR={Piga, Nicola A. and Bottarel, Fabrizio and Fantacci, Claudio and Vezzani, Giulia and Pattacini, Ugo and Natale, Lorenzo},
TITLE={MaskUKF: An Instance Segmentation Aided Unscented Kalman Filter for 6D Object Pose and Velocity Tracking},
JOURNAL={Frontiers in Robotics and AI},
VOLUME={8},
PAGES={38},
YEAR={2021},
URL={https://www.frontiersin.org/article/10.3389/frobt.2021.594583},
DOI={10.3389/frobt.2021.594583},
ISSN={2296-9144}
}
and/or the repository itself by pressing on the Cite this respository
button in the About section.
This repository is maintained by:
@xenvre |