Lightweight data validation and adaptation library for Python.
At a Glance:
- Supports both validation (check if a value is valid) and adaptation (convert a valid input to an appropriate output).
- Succinct: validation schemas can be specified in a declarative and extensible mini "language"; no need to define verbose schema classes upfront. A regular Python API is also available if the compact syntax is not your cup of tea.
- Batteries included: validators for most common types are included out of the box.
- Extensible: New custom validators and adaptors can be easily defined and registered.
- Informative, customizable error messages: Validation errors include the reason and location of the error.
- Agnostic: not tied to any particular framework or application domain (e.g. Web form validation).
- Well tested: Extensive test suite with 100% coverage.
- Production ready: Used for validating every access to the Podio API.
- Licence: MIT.
Valideer requires Python 2.7. To install run:
pip install valideer
Or for the latest version:
git clone git@github.com:podio/valideer.git cd valideer python setup.py install
To run the tests you need to install nose and optionally coverage for coverage report:
$ pip install nose coverage $ nosetests --with-coverage --cover-package=valideer .............................................................................. Name Stmts Miss Cover Missing --------------------------------------------------- valideer 2 0 100% valideer.base 101 0 100% valideer.validators 335 0 100% --------------------------------------------------- TOTAL 438 0 100% ---------------------------------------------------------------------- Ran 86 tests in 0.104s
We'll demonstrate valideer
using the following JSON schema example:
{ "name": "Product", "properties": { "id": { "type": "number", "description": "Product identifier", "required": true }, "name": { "type": "string", "description": "Name of the product", "required": true }, "price": { "type": "number", "minimum": 0, "required": true }, "tags": { "type": "array", "items": { "type": "string" } }, "stock": { "type": "object", "properties": { "warehouse": { "type": "number" }, "retail": { "type": "number" } } } } }
This can be specified by passing a similar but less verbose structure to the
valideer.parse
function:
>>> import valideer as V >>> product_schema = { >>> "+id": "number", >>> "+name": "string", >>> "+price": V.Range("number", min_value=0), >>> "tags": ["string"], >>> "stock": { >>> "warehouse": "number", >>> "retail": "number", >>> } >>> } >>> validator = V.parse(product_schema)
parse
returns a Validator
instance, which can be then used to validate
or adapt values.
To check if an input is valid call the is_valid
method:
>>> product1 = { >>> "id": 1, >>> "name": "Foo", >>> "price": 123, >>> "tags": ["Bar", "Eek"], >>> "stock": { >>> "warehouse": 300, >>> "retail": 20 >>> } >>> } >>> validator.is_valid(product1) True >>> product2 = { >>> "id": 1, >>> "price": 123, >>> } >>> validator.is_valid(product2) False
Another option is the validate
method. If the input is invalid, it raises
ValidationError
:
>>> validator.validate(product2) ValidationError: Invalid value {'price': 123, 'id': 1} (dict): missing required properties: ['name']
For the common use case of validating inputs when entering a function, the
@accepts
decorator provides some nice syntax sugar (shamelessly stolen from
typecheck):
>>> from valideer import accepts >>> @accepts(product=product_schema, quantity="integer") >>> def get_total_price(product, quantity=1): >>> return product["price"] * quantity >>> >>> get_total_price(product1, 2) 246 >>> get_total_price(product1, 0.5) ValidationError: Invalid value 0.5 (float): must be integer (at quantity) >>> get_total_price(product2) ValidationError: Invalid value {'price': 123, 'id': 1} (dict): missing required properties: ['name'] (at product)
Often input data have to be converted from their original form before they are
ready to use; for example a number that may arrive as integer or string and
needs to be adapted to a float. Since validation and adaptation usually happen
simultaneously, validate
returns the adapted version of the (valid) input
by default.
An existing class can be easily used as an adaptor by being wrapped in AdaptTo
:
>>> import valideer as V >>> adapt_prices = V.parse({"prices": [V.AdaptTo(float)]}).validate >>> adapt_prices({"prices": ["2", "3.1", 1]}) {'prices': [2.0, 3.1, 1.0]} >>> adapt_prices({"prices": ["2", "3f"]}) ValidationError: Invalid value '3f' (str): invalid literal for float(): 3f (at prices[1]) >>> adapt_prices({"prices": ["2", 1, None]}) ValidationError: Invalid value None (NoneType): float() argument must be a string or a number (at prices[2])
Similar to @accepts
, the @adapts
decorator provides a convenient syntax
for adapting function inputs:
>>> from valideer import adapts >>> @adapts(json={"prices": [AdaptTo(float)]}) >>> def get_sum_price(json): >>> return sum(json["prices"]) >>> get_sum_price({"prices": ["2", "3.1", 1]}) 6.1 >>> get_sum_price({"prices": ["2", "3f"]}) ValidationError: Invalid value '3f' (str): invalid literal for float(): 3f (at json['prices'][1]) >>> get_sum_price({"prices": ["2", 1, None]}) ValidationError: Invalid value None (NoneType): float() argument must be a string or a number (at json['prices'][2])
By default object properties are considered optional unless they start with "+".
This default can be inverted by using the parsing
context manager with
required_properties=True
. In this case object properties are considered
required by default unless they start with "?". For example:
validator = V.parse({ "+name": "string", "duration": { "+hours": "integer", "+minutes": "integer", "seconds": "integer" } })
is equivalent to:
with V.parsing(required_properties=True): validator = V.parse({ "name": "string", "?duration": { "hours": "integer", "minutes": "integer", "?seconds": "integer" } })
Similarly, additional properties that are not specified as either required or
optional are allowed by default. This default can be overriden by calling
parsing
with additional_properties=
False
to disallow all additional properties, orObject.REMOVE
to remove all additional properties from the adapted value, orany validator or parseable schema to validate all additional property values using this schema:
>>> schema = { >>> "name": "string", >>> "duration": { >>> "hours": "integer", >>> "minutes": "integer", >>> } >>> } >>> data = {"name": "lap", "duration": {"hours":3, "minutes":33, "seconds": 12}} >>> V.parse(schema).validate(data) {'duration': {'hours': 3, 'minutes': 33, 'seconds': 12}, 'name': 'lap'} >>> with V.parsing(additional_properties=False): ... V.parse(schema).validate(data) ValidationError: Invalid value {'hours': 3, 'seconds': 12, 'minutes': 33} (dict): additional properties: ['seconds'] (at duration) >>> with V.parsing(additional_properties=V.Object.REMOVE): ... print V.parse(schema).validate(data) {'duration': {'hours': 3, 'minutes': 33}, 'name': 'lap'} >>> with V.parsing(additional_properties="string"): ... V.parse(schema).validate(data) ValidationError: Invalid value 12 (int): must be string (at duration['seconds'])
The usual way to create a validator is by passing an appropriate nested structure
to parse
, as outlined above. This enables concise schema definitions with
minimal boilerplate. In case this seems too cryptic or "unpythonic" for your
taste, a validator can be also created explicitly from regular Python classes:
>>> from valideer import Object, HomogeneousSequence, Number, String, Range >>> validator = Object( >>> required={ >>> "id": Number(), >>> "name": String(), >>> "price": Range(Number(), min_value=0), >>> }, >>> optional={ >>> "tags": HomogeneousSequence(String()), >>> "stock": Object( >>> optional={ >>> "warehouse": Number(), >>> "retail": Number(), >>> } >>> ) >>> } >>> )
valideer
comes with several predefined validators, each implemented as a
Validator
subclass. As shown above, some validator classes also support a
shortcut form that can be used to specify implicitly a validator instance.
valideer.Boolean()
: Acceptsbool
instances.Shortcut: "boolean"
valideer.Integer()
: Accepts integers (numbers.Integral
instances), excludingbool
.Shortcut: "integer"
valideer.Number()
: Accepts numbers (numbers.Number
instances), excludingbool
.Shortcut: "number"
valideer.Date()
: Acceptsdatetime.date
instances.Shortcut: "date"
valideer.Time()
: Acceptsdatetime.time
instances.Shortcut: "time"
valideer.Datetime()
: Acceptsdatetime.datetime
instances.Shortcut: "datetime"
valideer.String(min_length=None, max_length=None)
: Accepts strings (basestring
instances).Shortcut: "string"
valideer.Pattern(regexp)
: Accepts strings that match the given regular expression.Shortcut: Compiled regular expression valideer.Condition(predicate, traps=Exception)
: Accepts values for whichpredicate(value)
is true. Any raised exception that is instance oftraps
is re-raised as aValidationError
.Shortcut: Python function or method. valideer.Type(accept_types=None, reject_types=None)
: Accepts instances of the givenaccept_types
but excluding instances ofreject_types
.Shortcut: Python type. For example int
is equivalent tovalideer.Type(int)
.valideer.Enum(values)
: Accepts a fixed set of values.Shortcut: N/A
valideer.HomogeneousSequence(item_schema=None, min_length=None, max_length=None)
: Accepts sequences (collections.Sequence
instances excluding strings) with elements that are valid foritem_schema
(if specified) and length betweenmin_length
andmax_length
(if specified).Shortcut: [item_schema] valideer.HeterogeneousSequence(*item_schemas)
: Accepts fixed length sequences (collections.Sequence
instances excluding strings) where thei
-th element is valid for thei
-thitem_schema
.Shortcut: (item_schema, item_schema, ..., item_schema) valideer.Mapping(key_schema=None, value_schema=None)
: Accepts mappings (collections.Mapping
instances) with keys that are valid forkey_schema
(if specified) and values that are valid forvalue_schema
(if specified).Shortcut: N/A valideer.Object(optional={}, required={}, additional=True)
: Accepts JSON-like objects (collections.Mapping
instances with string keys). Properties that are specified asoptional
orrequired
are validated against the respective value schema. Any additional properties are either allowed (ifadditional
is True), disallowed (ifadditional
is False) or validated against theadditional
schema.Shortcut: {"property": value_schema, "property": value_schema, ..., "property": value_schema}. Properties that start with '+'
are required, the rest are optional and additional properties are allowed.
valideer.AdaptBy(adaptor, traps=Exception)
: Adapts a value by callingadaptor(value)
. Any raised exception that is instance oftraps
is wrapped into aValidationError
.Shortcut: N/A valideer.AdaptTo(adaptor, traps=Exception, exact=False)
: Similar toAdaptBy
but for types. Any value that is already instance ofadaptor
is returned as is, otherwise it is adapted by callingadaptor(value)
. Ifexact
isTrue
, instances ofadaptor
subclasses are also adapted.Shortcut: N/A
valideer.Nullable(schema, default=None)
: Accepts values that are valid forschema
orNone
.default
is returned as the adapted value ofNone
.default
can also be a zero-argument callable, in which case the adapted value ofNone
isdefault()
.Shortcut: "?{validator_name}". For example "?integer"
accepts any integer orNone
value.valideer.NonNullable(schema=None)
: Accepts values that are valid forschema
(if specified) except forNone
.Shortcut: "+{validator_name}" valideer.Range(schema, min_value=None, max_value=None)
: Accepts values that are valid forschema
and within the given[min_value, max_value]
range.Shortcut: N/A valideer.AnyOf(*schemas)
: Accepts values that are valid for at least one of the givenschemas
.Shortcut: N/A valideer.AllOf(*schemas)
: Accepts values that are valid for all the givenschemas
.Shortcut: N/A valideer.ChainOf(*schemas)
: Passes values through a chain of validator and adaptorschemas
.Shortcut: N/A
The set of predefined validators listed above can be easily extended with user
defined validators. All you need to do is extend Validator
(or a more
convenient subclass) and implement the validate
method. Here is an example
of a custom validator that could be used to enforce minimal password strength:
from valideer import String, ValidationError class Password(String): name = "password" def __init__(self, min_length=6, min_lower=1, min_upper=1, min_digits=0): super(Password, self).__init__(min_length=min_length) self.min_lower = min_lower self.min_upper = min_upper self.min_digits = min_digits def validate(self, value, adapt=True): super(Password, self).validate(value) if len(filter(str.islower, value)) < self.min_lower: raise ValidationError("At least %d lowercase characters required" % self.min_lower) if len(filter(str.isupper, value)) < self.min_upper: raise ValidationError("At least %d uppercase characters required" % self.min_upper) if len(filter(str.isdigit, value)) < self.min_digits: raise ValidationError("At least %d digits required" % self.min_digits) return value
A few notes:
- The optional
name
class attribute creates a shortcut for referring to a default instance of the validator. In this example the string"password"
becomes an alias to aPassword()
instance. validate
takes an optional booleanadapt
parameter that defaults toTrue
. If it isFalse
, the validator is allowed to skip adaptation and perform validation only. This is basically an optimization hint that can be useful if adaptation happens to be significantly more expensive than validation. This isn't common though and soadapt
is usually ignored.
Setting a name
class attribute is the simplest way to create a validator
shortcut. A shortcut can also be created explicitly with the valideer.register
function:
>>> import valideer as V >>> V.register("strong_password", Password(min_length=8, min_digits=1)) >>> is_fair_password = V.parse("password").is_valid >>> is_strong_password = V.parse("strong_password").is_valid >>> for pwd in "passwd", "Passwd", "PASSWd", "Pas5word": >>> print (pwd, is_fair_password(pwd), is_strong_password(pwd)) ('passwd', False, False) ('Passwd', True, False) ('PASSWd', True, False) ('Pas5word', True, True)
Finally it is possible to parse arbitrary Python objects as validator shortcuts.
For example let's define a Not
composite validator, a validator that accepts
a value if and only if it is rejected by another validator:
class Not(Validator): def __init__(self, schema): self._validator = Validator.parse(schema) def validate(self, value, adapt=True): if self._validator.is_valid(value): raise ValidationError("Should not be a %s" % self._validator.__class__.__name__, value) return value
If we'd like to parse '!foo'
strings as a shortcut for Not('foo')
, we
can do so with the valideer.register_factory
decorator:
>>> @V.register_factory >>> def NotFactory(obj): >>> if isinstance(obj, basestring) and obj.startswith("!"): >>> return Not(obj[1:]) >>> >>> validate = V.parse({"i": "integer", "s": "!number"}).validate >>> validate({"i": 4, "s": ""}) {'i': 4, 's': ''} >>> validate({"i": 4, "s": 1.2}) ValidationError: Invalid value 1.2 (float): Should not be a Number (at s)