This is an efficient zero-shot classifier inspired by GLiNER work. It demonstrates the same performance as a cross-encoder while being more compute-efficient because classification is done at a single forward path.
It can be used for topic classification, sentiment analysis and as a reranker in RAG pipelines.
pip install gliclass
from gliclass import GLiClassModel, ZeroShotClassificationPipeline
from transformers import AutoTokenizer
model = GLiClassModel.from_pretrained("knowledgator/gliclass-small-v1")
tokenizer = AutoTokenizer.from_pretrained("knowledgator/gliclass-small-v1")
pipeline = ZeroShotClassificationPipeline(model, tokenizer, classification_type='multi-label', device='cuda:0')
text = "One day I will see the world!"
labels = ["travel", "dreams", "sport", "science", "politics"]
results = pipeline(text, labels, threshold=0.5)[0] #because we have one text
for result in results:
print(result["label"], "=>", result["score"])
Prepare training data in the following format: [ {"text": "Some text here!", "all_labels": ["sport", "science", "business", ...], "true_labels": ["other"]}, ... ]
Specify your training parameters in the train.py
script.