Diffusion Models Made Easy(dmme
) is a collection of easy to understand diffusion model implementations in Pytorch.
Documentation is available at https://diffusion-models-made-easy.readthedocs.io/en/latest/
Install from pip
pip install dmme
Install for customization or development
pip install -e ".[dev]"
Install dependencies for testing
pip install dmme[tests]
Install dependencies for editing documentation
pip install dmme[docs]
dmme
uses LightningCLI as a cli interface for training and evaluation.
You can find sample configuration file in the configs
directory
Using config files you can train DDPM by running
dmme.trainer fit --config configs/ddpm/cifar10.yaml
Or you can manually specify configurations for training
dmme.trainer fit --seed_everything 1337 \
--trainer.accelerator gpu --trainer.precision 16 --trainer.benchmark true \
--trainer.logger=pytorch_lightning.loggers.WandbLogger \
--trainer.logger.project="CIFAR10_Image_Generation" \
--trainer.logger.name="DDPM" \
--trainer.gradient_clip_val=1.0 \
--trainer.max_steps 800_000 \
--model LitDDPM --data CIFAR10
- DDPM
- DDIM
- IDDPM
- (WIP) Classifier Guidance