/BERTOS

BERTOS: transformer for oxidation state prediction

Primary LanguagePythonGNU General Public License v3.0GPL-3.0

BERTOS

BERTOS: transformer language model for oxidation state prediction

Citation: Fu, Nihang, Jeffrey Hu, Ying Feng, Gregory Morrison, Hans‐Conrad zur Loye, and Jianjun Hu. "Composition Based Oxidation State Prediction of Materials Using Deep Learning Language Models." Advanced Science (2023): 2301011. Link

Nihang Fu, Jeffrey Hu, Ying Feng, Jianjun Hu*

Machine Learning and Evolution Laboratory
Department of computer science and Engineering
University of South Carolina

Online Toolbox

Table of Contents

Installations

  1. Set up a virtual environment
conda create -n bertos
conda activate bertos
  1. PyTorch and transformers for computers with Nvidia GPU.
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=11.1 -c pytorch -c conda-forge
conda install -c conda-forge transformers

If you only have CPU on your computer, try this:

pip install transformers[torch]

If you are using Mac M1 chip computer, following this tutorial or this one to install pytorch and transformers.

  1. Other packagess
pip install -r requirements.txt

Datasets

Our training process is carried out on our BERTOS datasets. After extracting the data under datasets folder, you will get the following four folders ICSD, ICSD_CN, ICSD_CN_oxide, and ICSD_oxide.

Usage

A Quick Run

Quickly run the script to train a BERTOS using the OS-ICSD-CN training set and save the model into the ./model_icsdcn folder.

bash train_BERTOS.sh

Training

The command is to train a BERTOS model.

python train_BERTOS.py  --config_name $CONFIG_NAME$  --dataset_name $DATASET_LOADER$   --max_length $MAX_LENGTH$  --per_device_train_batch_size $BATCH_ SIZE$  --learning_rate $LEARNING_RATE$  --num_train_epochs $EPOCHS$    --output_dir $MODEL_OUTPUT_DIRECTORY$

We use ICSD_CN dataset as an example:

python train_BERTOS.py  --config_name ./random_config   --dataset_name materials_icsd_cn.py   --max_length 100  --per_device_train_batch_size 256  --learning_rate 1e-3  --num_train_epochs 500    --output_dir ./model_icsdcn

If you want to change the dataset, you can use a different dataset file to replace $DATASET_LOADER$, like materials_icsd.py, materials_icsdcn.py, materials_icsdcno.py, and materials_icsdo.py. And you can also follow the intructions of huggingface to build your own custom dataset.

Predict

Run getOS.py file to get predicted oxidation states for an input formula or input formulas.csv file containing multiple formulas.
Using your model:

python getOS.py --i SrTiO3 --model_name_or_path ./model_icsdcn
python getOS.py --f formulas.csv --model_name_or_path ./model_icsdcn

Using pretrained model:

python getOS.py --i SrTiO3 --model_name_or_path ./trained_models/ICSD_CN
python getOS.py --f formulas.csv --model_name_or_path ./trained_models/ICSD_CN

Pretrained Models

Our trained models can be downloaded from figshare BERTOS models, and you can use it as a test or prediction model.

Performance

Performance Removing OS, the datasets under datasets folder correspond to the datasets in the figure.

Acknowledgement

We use the transformer model as implemented in Huggingface.

@article{wolf2019huggingface,  
  title={Huggingface's transformers: State-of-the-art natural language processing},  
  author={Wolf, Thomas and Debut, Lysandre and Sanh, Victor and Chaumond, Julien and Delangue, Clement and Moi, Anthony and Cistac, Pierric and Rault, Tim and Louf, R{\'e}mi and Funtowicz, Morgan and others},  
  journal={arXiv preprint arXiv:1910.03771},  
  year={2019}  
}

Cite our work

Fu, Nihang, Jeffrey Hu, Ying Feng, Gregory Morrison, Hans‐Conrad zur Loye, and Jianjun Hu. "Composition Based Oxidation State Prediction of Materials Using Deep Learning Language Models." Advanced Science (2023): 2301011. [PDF](https://arxiv.org/pdf/2211.15895)

Contact

If you have any problem using BERTOS, feel free to contact via funihang@gmail.com.