A list of radar and optical satellite datasets for detection, classification, semantic segmentation and instance segmentation tasks.
A list of radar and optical satellite datasets for computer vision and deep learning. Categories: Instance segmentation, object detection, semantic segmentation, scene classification, retrieval, other.
*The specific datasets could not be accessed. Parts of information on the repository credits are from here, here, and here.
A list of radar and optical satellite datasets for aerial scene isntance detection, classification, semantic segmentation and instance segmentation tasks.
-
FUSAR-Ship Dataset v1.0 - 2020, Hou et al. ↦ Classification
-
Statoil/C-CORE Iceberg Classifier Challenge 2 categories ship and iceberg, 2-band HH/HV polarization SAR imagery.
-
Airbus Wind Turbine Patches
155k 128x128px image chips with wind turbines (SPOT, 1.5m res.). -
BigEarthNet: Large-Scale Sentinel-2 Benchmark Multilabel (CLC) 2018, 590,326 chips from Sentinel-2 L2A scenes.
-
WiDS Datathon 2019 : Detection of Oil Palm Plantations Planet satellite imagery (3m res.)., ca. 20k 256 x 256 px.
-
Cactus Aerial Photos 17k aerial photos, 13k cactus, 4k non-actus.
-
Functional Map of the World Challenge 63 categories from solar farms to shopping malls, 1 million chips, 4/8 band satellite imagery (0.3m res.).
-
EuroSAT 10 land cover categories, 27k 64x64 pixel chips, 3/16 band Sentinel-2 satellite imagery (10m res.).
-
AID: Aerial Scene Classification 10000 aerial images within 30 categories collected from Google Earth imagery.
-
RESISC45 45 scene categories, 31,500 images (700 per category, 256x256 px), image chips taken from Google Earth.
-
Deepsat: SAT-4/SAT-6 airborne datasets 6 land cover categories, 400k 28x28 pixel chips, 4-band RGBNIR aerial imagery (1m res.).
-
UC Merced Land Use Dataset 21 land cover categories from agricultural to parkinglot, 100 chips per class, aerial imagery (0.30m res.).
-
So2Sat LCZ42 (TUM Munich & DLR, Aug 2018)
Local climate zone classification, 400k 32x32 pixel chips covering 42 cities (LCZ42 dataset), Sentinel 1 & Sentinel 2 (both 10m res.), 51 GB -
Planet: Understanding the Amazon from Space
13 land cover categories + 4 cloud condition categories, 4-band (RGB-NIR) satelitte imagery (5m res.).
- coming up!!
- coming up!!
- coming up!!
- coming up!!
- HRSID (High-Resolution SAR Images Dataset) - 2020, Wei et al.
- SSDD (SAR Ship Detection Dataset) - 2021, Zhang et al.
- PASTIS: Panoptic Agricultural Satellite Time Series Sentinel-2 image chip timeseries, panoptic labels (instance index + semantic label for each pixel).
- SpaceNet 7: Multi-Temporal Urban Development Challenge Monthly building footprints and Planet imagery (4m. res) timeseries.
- SpaceNet 4: Off-Nadir Buildings 126k building footprints (Atlanta), 27 WorldView 2 images (0.3m res.).
- SpaceNet 2: Building Detection v2
685k building footprints, 3/8band Worldview-3 imagery (0.3m res.). - SpaceNet 1: Building Detection v1 Building footprints (Rio de Janeiro), 3/8band Worldview-3 imagery (0.5m res.).
- RarePlanes: Synthetic Data Takes Flight (CosmiQ Works, A.I.Reverie, June 2020)
Synthetic (630k planes, 50k images) and real (14.7k planes, 253 Worldview-3 images (0.3m res.), 122 locations, 22 countries) plane annotations & properties and satellite images. Tools. Paper: Shermeyer et al. 2020 - Agriculture-Vision Database & CVPR 2020 challenge 21k aerial farmland images (RGB-NIR, 512x512px chips), label masks for 6 field anomaly patterns..
- iSAID: Large-scale Dataset for Object Detection in Aerial Images 15 categories, 188k instances, object instances and segmentation masks, Google Earth & JL-1 image chips, replaces DOTA dataset.
- xView 2 Building Damage Asessment Challenge (DIUx, Nov 2019) .
550k building footprints & 4 damage scale categories, 20 global locations and 7 disaster types , Worldview-3 imagery (0.3m res.). - Microsoft BuildingFootprints Canada & USA & Uganda/Tanzania & Australia (Microsoft, Mar 2019)
GeoJSON format, delineation based on Bing imagery. - Airbus Ship Detection Challenge 131k ships, 104k train / 88k test image chips, satellite imagery (1.5m res.).
- Open AI Challenge: Tanzania
Building footprints & 3 building conditions, RGB UAV imagery - Link to data. - CrowdAI Mapping Challenge Buildings footprints, RGB satellite imagery.
- SpaceNet: Multi-Sensor All-Weather Mapping
48k building footprints (enhanced 3DBAG dataset, building height attributes), SAR data (4 polarizations) & Worldview-3. - LPIS agricultural field boundaries Denmark - Netherlands - France
Denmark: 293 crop/vegetation catgeories, 600k parcels. Netherlands: 294 crop/vegetation catgeories, 780k parcels
- SSDD (SAR Ship Detection Dataset) - 2017, Li et al.
- OpenSARship-1.0, 2.0- 2017, Huang et al.
- SAR-Ship-Dataset - 2019, Wang et al.
- AIR-SARShip -1.0, 2.0 - 2019, Sun et al.
- HRSID (High-Resolution SAR Images Dataset) - 2020, Wei et al.
- LS-SSDD-v1.0 (Large-Scale SAR Ship Detection Dataset) - 2020, Zhang et al.
- SSDD (SAR Ship Detection Dataset) - 2021, Zhang et al.
- DSSDD (Dual-polarimetric SAR Ship Detection Dataset) - 2021, Hu et al.
- SRSDD-v1.0 (SAR Rotation Ship Detection Dataset) - 2021, Lei et al.
- xView3-SAR (Multi-modal SAR Ship Detection + Characterization Dataset) - 2022, Paolo, Lin, Gupta, et. al.
- Airbus Aircraft Detection 103 images of worlwide airports (Pleiades, 0.5m res., 2560px).
- Airbus Oil Storage Detection Oil storage tank annotations, 98 worldwide images (SPOT, 1.2m res., 2560px).
- AFO - Aerial dataset of floating objects 3647 drone images from 50 scenes, 39991 objects with 6 categories.
- xView 2018 Detection Challenge
60 categories from helicopter to stadium, 1 million instances, Worldview-3 imagery (0.3m res.). - Open AI Challenge: Aerial Imagery of South Pacific Islands Tree position & 4 tree species, RGB UAV imagery (0.4m/0.8m res.), multiple AOIs in Tonga
- NOAA Fisheries Steller Sea Lion Population Count 5 sea lion categories, ~ 80k instances, ~ 1k aerial images.
- Stanford Drone Data
60 aerial UAV videos over Stanford campus and bounding boxes, 6 classes. - HRSC2016 (High Resolution Ship Collection 2016) - 2016, Liu et al.
- Airbus Ship Detection Challenge Dataset - 2018, Kaggle
- xView Dataset - 2018, Lam et al.
- DOTA (Dataset for Object deTection in Aerial images) - 2018, Xia et al.
- TGRS-HRRSD (High-Resolution Remote Sensing object Detection) - 2018, Kaggle
- MASATI-v2 (MAritime SATellite Imagery dataset) - 2018, Gallego et al.
- DIOR(object Detection In Optical Remote sensing images) - 2019, Li et al.
- FGSD (Fine-Grained Ship Detection) - 2020, Chen et al.
- PSDS (Peruvian Ship Data Set) + MSDS (Mini Ship Data Set) - 2020, Cordova et al.
- ShipRSImageNet - 2021, Zhang et al.
- S2-SHIPS - 2021, Ciocarlan et al.
- GF1-LRSD - 2021, Wu et al.
- VHRShips - 2022, Kizilkaya et al.
- Cars Overhead With Context (COWC) 32k car bounding boxes, aerial imagery (0.15m res.).
- xView3 Dark Vessel Detection 2021 Maritime object bounding boxes for 1k Sentinel-1 scenes (VH & VV polarizations), ancillary data (land/ice mask, bathymetry, wind speed, direction, quality).
- NEON Tree Crowns Dataset
Individual tree crown objects, height&area estimates, 100 million instances, 37 geographic sites across the US, DeepForest, Has LiDAR data. - NIST DSE Plant Identification with NEON Remote Sensing Data Tree position, tree species and crown parameters, hyperspectral (1m res.) & RGB imagery (0.25m res.), LiDAR point cloud and canopy height model
- FloodNet
2343 image chips (drone imagery), 10 landcover categories. - LoveDA
5987 image chips (Google Earth), 7 landcover categories. - FloodNet Challenge 2343 UAV images, 2 competition tracks (Binary & semantic flood classification; Object counting & condition recognition)
- Dynamic EarthNet Challenge Weekly Planetscope time-series (3m res.) over 2 years, 75 aois, landcover labels (7 categories), 2 competition tracks (Binary land cover classification & multi-class change detection)
- Sentinel-2 Cloud Mask Catalogue 513 cropped subscenes (1022x1022 pixels) taken randomly from entire 2018 Sentinel-2 archive.
- MiniFrance 2000 very high resolution aerial images over 16 cities in France (50cm res., from IGN BDORTHO).
- LandCoverNet: A Global Land Cover Classification Training Dataset 1980 image chips of 256 x 256 pixels in V1.0 spanning 66 tiles of Sentinel-2.
- LandCover.ai: Dataset for Automatic Mapping of Buildings, Woodlands and Water from Aerial Imagery 41 orthophotos (9000x9000 px) over Poland, Aerial Imagery (25cm & 50cm res.)
- 95-Cloud: A Cloud Segmentation Dataset
34701 manually segmented 384x384 patches with cloud masks, Landsat 8 imagery (R,G,B,NIR; 30 m res.) - SkyScapes: Urban infrastructure & lane markings Highly accurate street lane markings & urban infrastructure . Aerial imagery (0.13 m res.).
- Open AI Challenge: Caribbean Predict building roof type (22,553), RGB UAV imagery (4cm res.).
- ALCD Reference Cloud Masks 8 classes (inc. cloud and cloud shadow) for 38 Sentinel-2 scenes (10 m res.).
- Agricultural Crop Cover Classification Challenge 2 main categories corn and soybeans, Landsat 8 imagery (30m res.).
- RoadNet Road network labels, high-res Google Earth imagery, 21 regions.
- SpaceNet 3: Road Network Detection 8000 km of roads in 5 city aois, 3/8band Worldview-3 imagery (0.3m res.).
- DSTL Satellite Imagery Feature Detection Challenge 10 land cover categories from crops to vehicle small, 57 1x1km images, 3/16-band Worldview 3 imagery (0.3m-7.5m res.).
- SPARCS: S2 Cloud Validation data 7 categories, 80 1kx1k px. subset Landsat 8 scenes (30m res.).
- Inria Aerial Image Labeling Building footprint masks, RGB aerial imagery (0.3m res.).
- Open Cities AI Challenge
790k building footprints from Openstreetmap (2 label quality categories), aerial imagery (0.03-0.2m resolution, RGB, 11k 1024x1024 chips, COG format). - DroneDeploy Segmentation Dataset Drone imagery (0.1m res., RGB), labels & elevation data, baseline model implementation.
- SpaceNet 5: Automated Road Network Extraction & Route Travel Time Estimation 2300 image chips, street geometries with location, shape and estimated travel time, 3/8band Worldview-3 imagery (0.3m res.).
- SEN12MS 180,748 corresponding image triplets containing Sentinel-1 (VV&VH), Sentinel-2 (all bands, cloud-free), and MODIS-derived land cover maps (IGBP, LCCS, 17 classes, 500m res.).
- Slovenia Land Cover Classification 10 land cover classes, temporal stack of hyperspectral Sentinel-2 imagery.
- Urban 3D Challenge
157k building footprint masks, RGB orthophotos (0.5m res.), DSM/DTM. - ISPRS Potsdam 2D Semantic Labeling Contest 6 urban land cover classes, raster mask labels, 4-band RGB-IR aerial imagery (0.05m res.) & DSM, 38 image patches
- SEN12MS-CR & SEN12MS-CR-TS
A multi-modal and mono-temporal data set for cloud removal. Sentinel-1 & Sentinel-2, 2018. 175 globally distributed aois. - IEEE Data Fusion Contest 2022 Semi-supervised semantic segmentation, 19 cities and surroundings with multi-sensor tiles (VHR Aerial imagery 50cm res., Elevation model) & per pixel labels (contains landcover / landuse classes from UrbanAtlas 2012),
- IEEE Data Fusion Contest 2021 Detection of settlements without electricity, 98 multi-temporal/multi-sensor tiles ( Sentinel-1, Sentinel-2, Landsat-8, VIIRS), per chip & per pixel labels (contains buildings, presence electricity).
- University-1652: Drone-based Geolocalization (Image Retrieval)
Corresponding imagery from drone, satellite and ground camera of 1,652 university buildings. - IEEE Data Fusion Contest 2020 Land cover classification based on SEN12MS dataset (see category Semantic Segmentation on this list), low- and high-resolution tracks.
- IEEE Data Fusion Contest 2019 Multiple tracks: Semantic 3D reconstruction, Semantic Stereo, 3D-Point Cloud Classification. Worldview-3 (8-band, 0.35cm res.) satellite imagery, LiDAR (0.80m pulse spacing, ASCII format), semantic labels, urban setting USA, baseline methods provided,
- IEEE Data Fusion Contest 2018 20 land cover categories by fusing three data sources: Multispectral LiDAR, Hyperspectral (1m), RGB imagery (0.05m res.).
- DEEPGLOBE - 2018 Satellite Challange Three challenge tracks: Road Extraction, Building Detection, Land cover classification.
- TiSeLaC: Time Series Land Cover Classification Challenge Land cover time series classification (9 categories), Landsat-8 (23 images time series, 10 band features, 30m res.).
- Multi-View Stereo 3D Mapping Challenge Develop a Multi-View Stereo (MVS) 3D mapping algorithm that can convert high-resolution Worldview-3 satellite images to 3D point clouds, 0.2m lidar ground truth data.
- Draper Satellite Image Chronology Predict the chronological order of images taken at the same locations over 5 days, Kaggle kernels