/dimensionality-reduction-using-auto-encoder

Perform Dimensionality Reduction using AutoEncoder.

Primary LanguageJupyter Notebook

Dimensionality Reduction Using AutoEncoder

See: notebook.ipynb

Result on test data:
  • with original features (dimensions=28), ROC AUC Score = 0.8430741138771947
  • with low dimensional features (dimensions=14), ROC AUC Score = 0.736416256396276
  • Pipeline: original features -> Robust scaler -> low dimensional features -> DMatrix -> XGBoost

Info
  • notebook.ipynb - contains full code
  • scaler - pickle file, SkLearn Robust Scaler
  • saved_encoder - Tensorflow saved model, encoder used to transform features to low dimensional space
  • clf_red - pickle file, XGBoost classification model, accept low dimensional features as input
  • clf - pickle file, XGBoost classification model, accept original features as input
  • saved_model - Tensorflow saved model, Autoencoder, used to train encoder

Load pickle file using python pickle module

Load TensorFlow model using, tensorflow.keras.models.load_model function