Copyright (c) 2014-2018 Ulf Wiger
Version: 0.9.0
Jobs is a job scheduler for load regulation of Erlang applications. It provides a queueing framework where each queue can be configured for throughput rate, credit pool and feedback compensation. Queues can be added and modified at runtime, and customizable "samplers" propagate load status across all nodes in the system.
Specifically, jobs provides three features:
- Job scheduling: A job is scheduled according to certain constraints. For instance, you may want to define that no more than 9 jobs of a certain type can execute simultaneously and the maximal rate at which you can start such jobs are 300 per second.
- Job queueing: When load is higher than the scheduling limits additional jobs are queued by the system to be run later when load clears. Certain rules govern queues: are they dequeued in FIFO or LIFO order? How many jobs can the queue take before it is full? Is there a deadline after which jobs should be rejected. When we hit the queue limits we reject the job. This provides a feedback mechanism on the client of the queue so you can take action.
- Sampling and dampening: Periodic samples of the Erlang VM can provide information about the health of the system in general. If we have high CPU load or high memory usage, we apply dampening to the scheduling rules: we may lower the concurrency count or the rate at which we execute jobs. When the health problem clears, we remove the dampener and run at full speed again.
The Jobs server is designed to not crash. However, in the unlikely event
that it should occur (and it has!) Jobs does not automatically restore changes
that have been effected through the API. This can be enabled, setting the
Jobs environment variable auto_restore
to true
, or calling the function
jobs_server:auto_restore(true)
. This will tell the jobs_server to remember
every configuration change and replay them, in order, after a process restart.
The following examples are fetched from the EUC 2013 presentation on Jobs.
%% @doc Handle a JSON-RPC request.
handler_session(Arg) ->
jobs:run(
rpc_from_web,
fun() ->
try
yaws_rpc:handler_session(
maybe_multipart(Arg),{?MODULE, web_rpc})
catch
error:E ->
...
end
end).
case jobs:ask(riak_kv_fsm) of
{ok, JobId} ->
try
{ok, Pid} = riak_kv_get_fsm_sup:start_get_fsm(...),
Timeout = recv_timeout(Options),
wait_for_reqid(ReqId, Timeout)
after
jobs:done(JobId) %% Only needed if process stays alive
end;
{error, rejected} -> %% Overload!
{error, timeout}
end
2> jobs:add_queue(q, [{standard_rate,1}]).
ok
3> jobs:run(q, fun() -> io:fwrite("job: ~p~n", [time()]) end).
job: {14,37,7}
ok
4> jobs:run(q, fun() -> io:fwrite("job: ~p~n", [time()]) end).
job: {14,37,8}
ok
...
5> jobs:run(q, fun() -> io:fwrite("job: ~p~n", [time()]) end).
job: {14,37,10}
ok
6> jobs:run(q, fun() -> io:fwrite("job: ~p~n", [time()]) end).
job: {14,37,11}
ok
Eshell V5.9.2 (abort with ^G)
1> application:start(jobs).
ok
2> jobs:add_queue(q,
[{standard_rate,1},
{stateful,fun(init,_) -> {0,5};
({call,{size,Sz},_,_},_) -> {reply,ok,{0,Sz}};
({N,Sz},_) -> {N, {(N+1) rem Sz,Sz}}
end}]).
ok
3> jobs:run(q,fun(Opaque) -> jobs:job_info(Opaque) end).
0
4> jobs:run(q,fun(Opaque) -> jobs:job_info(Opaque) end).
1
5> jobs:run(q,fun(Opaque) -> jobs:job_info(Opaque) end).
2
6> jobs:run(q,fun(Opaque) -> jobs:job_info(Opaque) end).
3
7> jobs:run(q,fun(Opaque) -> jobs:job_info(Opaque) end).
4
8> jobs:run(q,fun(Opaque) -> jobs:job_info(Opaque) end).
0
9> jobs:run(q,fun(Opaque) -> jobs:job_info(Opaque) end).
1
%% Resize the 'pool'
10> jobs:ask_queue(q, {size,3}).
ok
11> jobs:run(q,fun(Opaque) -> jobs:job_info(Opaque) end).
0
12> jobs:run(q,fun(Opaque) -> jobs:job_info(Opaque) end).
1
13> jobs:run(q,fun(Opaque) -> jobs:job_info(Opaque) end).
2
14> jobs:run(q,fun(Opaque) -> jobs:job_info(Opaque) end).
0
...
Eshell V5.9.2 (abort with ^G)
1> application:start(jobs).
ok
2> jobs:add_queue(p,
[{producer, fun() -> io:fwrite("job: ~p~n",[time()]) end},
{standard_rate,1}]).
job: {14,33,51}
ok
3> job: {14,33,52}
job: {14,33,53}
job: {14,33,54}
job: {14,33,55}
...
2> jobs:add_queue(q,[passive]).
ok
3> Fun = fun() -> io:fwrite("~p starting...~n",[self()]),
3> Res = jobs:dequeue(q, 3),
3> io:fwrite("Res = ~p~n", [Res])
3> end.
#Fun<erl_eval.20.82930912>
4> jobs:add_queue(p, [{standard_counter,3},{producer,Fun}]).
<0.47.0> starting...
<0.48.0> starting...
<0.49.0> starting...
ok
5> jobs:enqueue(q, job1).
Res = [{113214444910647,job1}]
ok
<0.54.0> starting...
3> Pid = spawn(fun() -> receive stop -> ok end end).
<0.131.0>
4> jobs:add_queue(q, [{standard_rate,1}, {link, Pid}]).
ok
5> jobs:run(q, fun() -> io:fwrite("job: ~p~n", [time()]) end).
job: {19,33,37}
ok
6> exit(Pid, kill).
=INFO REPORT==== 29-May-2020::19:33:45 ===
jobs: removing_queue
name: q
reason: linked
true
7> jobs:run(q, fun() -> io:fwrite("job: ~p~n", [time()]) end).
** exception error: bad argument
in function jobs_server:call/3 (/home/uwiger/uw/jobs/src/jobs_server.erl, line 236)
in call from jobs_server:run/2 (/home/uwiger/uw/jobs/src/jobs_server.erl, line 117)
8> jobs:queue_info(q).
undefined
(a@uwair)1> jobs:queue_info(q).
{queue,[{name,q},
{mod,jobs_queue},
{type,fifo},
{group,undefined},
{regulators,[{rr,[{name,{rate,q,1}},
{rate,{rate,[{limit,1},
{preset_limit,1},
{interval,1.0e3},
{modifiers,
[{cpu,10},{memory,10}]},
{active_modifiers,[]}
]}}]}]},
{max_time,undefined},
{max_size,undefined},
{latest_dispatch,113216378663298},
{approved,4},
{queued,0},
...,
{stateful,undefined},
{st,{st,45079}}]}
##Scenarios and Corresponding Configuration Examples
####EXAMPLE 1:
- Add counter regulated queue called heavy_crunches to limit your cpu intensive code executions to no more than 7 at a time
Configuration:
{ jobs, [
{ queues, [
{ heavy_crunches, [ { regulators, [{ counter, [{ limit, 7 }] } ] }] }
]
}
]
}
Anywhere in your code wrap cpu-intensive work in a call to jobs server and-- voilĂ ! --it is counter-regulated:
jobs:run( heavy_crunches,fun()->my_cpu_intensive_calculation() end)
####EXAMPLE 2:
- Add rate regulated queue called http_requests to ensure that your http server gets no more than 1000 requests per second.
- Additionally, set the queue size to 10,000 (i.e. to control queue memory consumption)
Configuration:
{ jobs, [
{ queues, [
{ http_requests, [ { max_size, 10000}, {regulators, [{ rate, [{limit, 1000}]}]}]}
]
}
]
}
Wrap your request entry point in a call to jobs server and it will end up being rate-regulated.
jobs:run(http_requests,fun()->handle_http_request() end)
NOTE: with the config above, once 10,000 requests accumulates in the queue any incoming requests are dropped on the floor.
####EXAMPLE 3:
-
HTTP requests will always have a reasonable execution time. No point in keeping them in the queue past the timeout.
-
Let's create patient_user_requests queue that will keep requests in the queue for up to 10 seconds
{ patient_user_requests, [
{ max_time, 10000},
{ regulators, [{rate, [ { limit, 1000 } ] }
]
}
- Let's create impatient_user_requests queue that will keep requests in the queue for up to 200 milliseconds. Additionally, we'll make it a LIFO queue. Unfair, but if we assume that happy/unhappy is a boolean we're likely to maximize the happy users!
{ impatient_user_requests, [
{ max_time, 200},
{ type, lifo},
{ regulators, [{rate, [ { limit, 1000 } ] }
]
}
NOTE: In order to pace requests from both queues at 1000 per second, use group_rate regulation (EXAMPLE 4)
####EXAMPLE 4:
- Rate regulate http requests from multiple queues
Create group_rates regulator called http_request_rate and assign it to both impatient_user_requests and patient_user_requests
{ jobs, [
{ group_rates,[{ http_request_rate, [{limit,1000}] }] },
{ queues, [
{ impatient_user_requests,
[ {max_time, 200},
{type, lifo},
{regulators,[{ group_rate, http_request_rate}]}
]
},
{ patient_user_requests,
[ {max_time, 10000},
{regulators,[{ group_rate, http_request_rate}
]
}
]
}
]
}
####EXAMPLE 5:
- Can't afford to drop http requests on the floor once max_size is reached?
- Implement and use your own queue to persist those unfortunate http requests and serve them eventually
-module(my_persistent_queue).
-behaviour(jobs_queue).
-export([ new/2,
delete/1,
in/3,
out/2,
peek/1,
info/2,
all/1]).
## implementation
...
Configuration:
{ jobs, [
{ queues, [
{ http_requests, [
{ mod, my_persistent_queue},
{ max_size, 10000 },
{ regulators, [ { rate, [ { limit, 1000 } ] } ] }
]
}
]
}
]
}
###The use of sampler framework
- Get a sampler running and sending feedback to the jobs server.
- Apply its feedback to a regulator limit.
####EXAMPLE 6:
- Adjust rate regulator limit on the fly based on the feedback from jobs_sampler_cpu named cpu_feedback
{ jobs, [
{ samplers, [{ cpu_feedback, jobs_sampler_cpu, [] } ] },
{ queues, [
{ http_requests, [
{ regulators, [ { rate, [ { limit,1000 } ] },
{ modifiers, [ { cpu_feedback, 10} ] } %% 10 = % increment by which to modify the limit
]
}
]
}
]
}
This application requires 'exprecs'. The 'exprecs' module is part of http://github.com/uwiger/parse_trans
For issues, comments or feedback please [create an issue!] 1
jobs |
jobs_app |
jobs_info |
jobs_lib |
jobs_prod_simple |
jobs_queue |
jobs_queue_list |
jobs_sampler |
jobs_sampler_cpu |
jobs_sampler_history |
jobs_sampler_mnesia |
jobs_stateful_simple |