/microbleed-detection

Detection of cerebral microbleeds using deep learning method consisting of 2 steps: initial candidate detection and candidate discrimination using a student-teacher network.

Primary LanguagePython

microbleed-detection

Automated Detection of Cerebral Microbleeds (CMBs) on MR images using Knowledge Distillation Framework

Code for implementation of automated tool for CMB detection using knowledge detection.

Citation

If you use MicrobleedNet, please cite the following papers:

  • Sundaresan, Vaanathi, Christoph Arthofer, Giovanna Zamboni, Andrew G. Murchison, Robert A. Dineen, Peter M. Rothwell, Dorothee P. Auer et al. "Automated detection of cerebral microbleeds on MR images using knowledge distillation framework." Frontiers in Neuroinformatics 17 (2023). [DOI: https://doi.org/10.3389/fninf.2023.1204186]
  • Sundaresan, Vaanathi, Christoph Arthofer, Giovanna Zamboni, Robert A. Dineen, Peter M. Rothwell, Stamatios N. Sotiropoulos, Dorothee P. Auer et al. "Automated detection of candidate subjects with cerebral microbleeds using machine learning." Frontiers in neuroinformatics 15 (2022): 777828. [DOI: https://doi.org/10.3389/fninf.2021.777828]

This is a beta release of the code for CMB detection. Any issues please contact: vaanathi@iisc.ac.in.

Software versions used for truenet:

  • Python 3.5.2
  • PyTorch 1.2.0

Method:

Candidate detection and discrimination steps for CMB detection.

For the initial CMB candidate detection, in addition to the intensity characteristics, we use the radial symmetry property of CMBs as input along with the preprocessed input image. We used a combination of weighted cross-entropy (CE) and Dice loss functions. In candidate discrimination step, we use a student-teacher framework for classifying true CMB candidates from FPs. The teacher model uses a multi-tasking architecture consisting of three parts:

  • feature extractor (Tf )
  • voxel-wise CMB segmentor (Ts)
  • patch-level CMB classifier (Tc)

The student model consists of the feature extractor and patch-level classifier parts (Tf + Tc) of the teacher model. We trained the student model in an offline manner using response-based knowledge distillation (KD).

To install the microbleednet tool

Clone the git repository into your local directory and run:

python setup.py install

To find about the subcommands available in microbleednet:

microbleednet --help

And for options and inputs for each sub-command, type:

microbleednet <subcommand> --help (e.g. microbleednet train --help)

prepare_microbleednet_data

Usage: prepare_microbleednet_data <input_image_name> <output_basename>
 
The script prepares the input data to be used in microbleednet with a specified output basename
input_image_name  	name of the input unprocessed  image
output_basename 	name to be used for the processed image (along with the absolute path); 

Running microbleednet

Microbleed detection model using knowledge distillation framework, v1.0.1

Subcommands available:
    - microbleednet train         Training a Microbleednet model from scratch
    - microbleednet evaluate      Applying a saved/pretrained Microbleednet model for testing
    - microbleednet fine_tune     Fine-tuning a saved/pretrained Microbleednetmodel from scratch
    - microbleednet loo_validate  Leave-one-out validation of Microbleednet model

Training the Microbleednet model

microbleednet train: training the TrUE-Net model from scratch, v1.0.1

Usage: microbleednet train -i <input_directory> -l <label_directory> -m <model_directory> [options] 


Compulsory arguments:
       -i, --inp_dir                 Path to the directory containing FLAIR and T1 images for training 
       -l, --label_dir               Path to the directory containing manual labels for training 
       -m, --model_dir               Path to the directory where the training model or weights need to be saved 
   
Optional arguments:
       -tr_prop, --train_prop        Proportion of data used for training [0, 1]. The rest will be used for validation [default = 0.8]
       -bfactor, --batch_factor      Number of subjects to be considered for each mini-epoch [default = 10]
       -psize, --patch_size 	Size of patches extracted for candidate detection [default = 48]
       -cand_det, —cand_detection	Train the candidate detection (step 1) model [default = True]
       -cand_disc, —cand_discrimination 	Train the candidate discrimination (step 2) model [default = True]
       -da, --data_augmentation      Applying data augmentation [default = True]
       -af, --aug_factor             Data inflation factor for augmentation [default = 2]
       -sv_resume, --save_resume_training    Whether to save and resume training in case of interruptions (default-False)
       -ilr, --init_learng_rate      Initial LR to use in scheduler [0, 0.1] [default=0.001]
       -lrm, --lr_sch_mlstone        Milestones for LR scheduler (e.g. -lrm 5 10 - to reduce LR at 5th and 10th epochs) [default = 10]
       -gamma, --lr_sch_gamma        Factor by which the LR needs to be reduced in the LR scheduler [default = 0.1]
       -opt, --optimizer             Optimizer used for training. Options:adam, sgd [default = adam]
       -bs, --batch_size             Batch size used for training [default = 8]
       -ep, --num_epochs             Number of epochs for training [default = 60]
       -es, --early_stop_val         Number of epochs to wait for progress (early stopping) [default = 20]
       -sv_mod, --save_full_model    Saving the whole model instead of weights alone [default = False]
       -cv_type, --cp_save_type      Checkpoint to be saved. Options: best, last, everyN [default = last]
       -cp_n, --cp_everyn_N          If -cv_type=everyN, the N value [default = 10]
       -v, --verbose                 Display debug messages [default = False]
       -h, --help.                   Print help message

Testing the microbleednet model

The pretrained models on MWSC and UKBB are currently available at https://drive.google.com/drive/folders/1pqTFbvPVANFngMx0Z6Z352k0xPIMa9JA?usp=sharing

For testing purposes, you can download the models from the above drive link into a folder and set the folder as environment variable and then run microbleednet.

For doing this, once you download the models into a folder, please type the following in the command prompt:

export MICROBLEEDNET_PRETRAINED_MODEL_PATH="/absolute/path/to/the/model/folder"

and then run microbleednet commands.

microbleednet evaluate: evaluating the Microbleednet model, v1.0.1

Usage: microbleednet evaluate -i <input_directory> -m <model_directory> -o <output_directory> [options]
   
Compulsory arguments:
       -i, --inp_dir                         Path to the directory containing FLAIR and T1 images for testing
       -m, --model_name                      Model basename with absolute path (will not be considered if optional argument -p=True)                                                                  
       -o, --output_dir                      Path to the directory for saving output predictions
   
Optional arguments:
       -p, --pretrained_model                Whether to use a pre-trained model, if selected True, -m (compulsory argument will not be onsidered) [default = False]
       -pmodel, --pretrained_model           Pre-trained model to be used
       -nclass, --num_classes                Number of classes in the labels used for training the model (for both pretrained models, -nclass=2) default = 2]
       -int, --intermediate                  Saving intermediate prediction results (individual planes) for each subject [default = False]
       -cv_type, --cp_load_type              Checkpoint to be loaded. Options: best, last, everyN [default = last]
       -cp_n, --cp_everyn_N                  If -cv_type = everyN, the N value [default = 10]
       -v, --verbose                         Display debug messages [default = False]
       -h, --help.                           Print help message

Fine-tuning the Microbleednet model

Usage: microbleednet fine_tune -i <input_directory> -l <label_directory> -m <model_directory> -o <output_directory> [options]

Compulsory arguments:
       -i, --inp_dir                         Path to the directory containing FLAIR and T1 images for fine-tuning
       -l, --label_dir                       Path to the directory containing manual labels for training 
       -m, --model_dir                       Path to the directory where the trained model/weights were saved
       -o, --output_dir                      Path to the directory where the fine-tuned model/weights need to be saved
   
Optional arguments:
       -p, --pretrained_model                Whether to use a pre-trained model, if selected True, -m (compulsory argument will not be considered) [default = False]
       -pmodel, --pretrained_model           Pre-trained model to be used
       -cpld_type, --cp_load_type            Checkpoint to be loaded. Options: best, last, everyN [default = last]
       -cpld_n, --cpload_everyn_N            If everyN option was chosen for loading a checkpoint, the N value [default = 10]
       -ftlayers, --ft_layers                Layers to fine-tune starting from the decoder (e.g. 1 2 -> final two two decoder layers, refer to the figure above) 
       -tr_prop, --train_prop                Proportion of data used for fine-tuning [0, 1]. The rest will be used for validation [default = 0.8]
       -bfactor, --batch_factor              Number of subjects to be considered for each mini-epoch [default = 10]
       -psize, --patch_size 	Size of patches extracted for candidate detection [default = 48]
       -cand_det, —cand_detection	Train the candidate detection (step 1) model [default = True]
       -cand_disc, —cand_discrimination 	Train the candidate discrimination (step 2) model [default = True]
       -da, --data_augmentation              Applying data augmentation [default = True]
       -af, --aug_factor                     Data inflation factor for augmentation [default = 2]
       -sv_resume, --save_resume_training    Whether to save and resume training in case of interruptions (default-False)
       -ilr, --init_learng_rate              Initial LR to use in scheduler for fine-tuning [0, 0.1] [default=0.0001]
       -lrm, --lr_sch_mlstone                Milestones for LR scheduler (e.g. -lrm 5 10 - to reduce LR at 5th and 10th epochs) [default = 10]
       -gamma, --lr_sch_gamma                Factor by which the LR needs to be reduced in the LR scheduler [default = 0.1]
       -opt, --optimizer                     Optimizer used for fine-tuning. Options:adam, sgd [default = adam]
       -bs, --batch_size                     Batch size used for fine-tuning [default = 8]
       -ep, --num_epochs                     Number of epochs for fine-tuning [default = 60]
       -es, --early_stop_val                 Number of fine-tuning epochs to wait for progress (early stopping) [default = 20]
       -sv_mod, --save_full_model            Saving the whole fine-tuned model instead of weights alone [default = False]
       -cv_type, --cp_save_type              Checkpoint to be saved. Options: best, last, everyN [default = last]
       -cp_n, --cp_everyn_N                  If -cv_type = everyN, the N value [default = 10]
       -v, --verbose                         Display debug messages [default = False]
       -h, --help.                           Print help message

Cross-validation of Microbleednet model

microbleednet cross_validate: cross-validation of the Microbleednet model, v1.0.1

Usage: microbleednet cross_validate -i <input_directory> -l <label_directory> -o <output_directory> [options]
   
Compulsory arguments:
       -i, --inp_dir                         Path to the directory containing FLAIR and T1 images for fine-tuning
       -l, --label_dir                       Path to the directory containing manual labels for training 
       -o, --output_dir                      Path to the directory for saving output predictions
   
Optional arguments:
       -fold, --cv_fold                      Number of folds for cross-validation (default = 5)
       -resume_fold, --resume_from_fold      Resume cross-validation from the specified fold (default = 1)         
       -tr_prop, --train_prop                Proportion of data used for training [0, 1]. The rest will be used for validation [default = 0.8]
       -bfactor, --batch_factor              Number of subjects to be considered for each mini-epoch [default = 10]
       -psize, --patch_size 	Size of patches extracted for candidate detection [default = 48]
       -da, --data_augmentation              Applying data augmentation [default = True]
       -af, --aug_factor                     Data inflation factor for augmentation [default = 2]
       -sv_resume, --save_resume_training    Whether to save and resume training in case of interruptions (default-False)
       -ilr, --init_learng_rate              Initial LR to use in scheduler for training [0, 0.1] [default=0.0001]
       -lrm, --lr_sch_mlstone                Milestones for LR scheduler (e.g. -lrm 5 10 - to reduce LR at 5th and 10th epochs) [default = 10]
       -gamma, --lr_sch_gamma                Factor by which the LR needs to be reduced in the LR scheduler [default = 0.1]
       -opt, --optimizer                     Optimizer used for training. Options:adam, sgd [default = adam]
       -bs, --batch_size                     Batch size used for fine-tuning [default = 8]
       -ep, --num_epochs                     Number of epochs for fine-tuning [default = 60]
       -es, --early_stop_val                 Number of fine-tuning epochs to wait for progress (early stopping) [default = 20]
       -int, --intermediate                  Saving intermediate prediction results (individual planes) for each subject [default = False]                                                                                  
       -v, --verbose                         Display debug messages [default = False]
       -h, --help.                           Print help message

Input formats and time taken:

Currently nifti files supported and any single modality (T2* GRE/SWI/QSM) is sufficient. Similar file types supported by preprocessing codes too.

Currently the implementation takes <5mins/scan for detecting CMBs.

Also refer: https://www.frontiersin.org/articles/10.3389/fninf.2021.777828/full

If you use the tool from this repository, please cite the following papers:

  title={Automated Detection of Cerebral Microbleeds on MR images using Knowledge Distillation Framework},
  author={Sundaresan, Vaanathi and Arthofer, Christoph and Zamboni, Giovanna and Murchison, Andrew G and Dineen, Robert A and Rothwell, Peter M and Auer, Dorothee P and Wang, Chaoyue and Miller, Karla L and Tendler, Benjamin C and others},
  journal={medRxiv},
  pages={2021--11},
  year={2021},
  publisher={Cold Spring Harbor Laboratory Press}
}

@article{sundaresan2022automated,
  title={Automated detection of candidate subjects with cerebral microbleeds using machine learning},
  author={Sundaresan, Vaanathi and Arthofer, Christoph and Zamboni, Giovanna and Dineen, Robert A and Rothwell, Peter M and Sotiropoulos, Stamatios N and Auer, Dorothee P and Tozer, Daniel J and Markus, Hugh S and Miller, Karla L and others},
  journal={Frontiers in Neuroinformatics},
  volume={15},
  pages={80},
  year={2022},
  publisher={Frontiers}
}