Code Author: Trent Kyono and Boris van Breugel
This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks" paper(2021).
pip install -r requirements.txt
pip install .
You can run the tests using
pip install -r requirements_dev.txt
pip install .
pytest -vsx
decaf/DECAF.py
- Synthetic data generator class - DECAF.tests/run_example.py
- Runs a nonlinear toy DAG example. The dag structure is stored in thedag_seed
variable. The edge removal is stored in thebias_dict
variable. See example usage in this file.
Base example on toy dag:
$ cd tests
$ python run_example.py
An example to run with a dataset size of 2000 for 300 epochs:
$ python run_example.py --datasize 2000 --epochs 300
@inproceedings{kyono2021decaf,
title = {DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks},
author = {van Breugel, Boris and Kyono, Trent and Berrevoets, Jeroen and van der Schaar, Mihaela},
year = 2021,
booktitle = {Conference on Neural Information Processing Systems(NeurIPS) 2021}
}