/autoclassify

Sklearn classifications models auto training and logging progress

Primary LanguagePythonMIT LicenseMIT

AutoClassify

Sklearn classifications models auto training and logging progress

  • Fits 30+ sklean algorithms
  • generates 25+ metrics (almost all classification metrics)
  • Logs status with MLFLow

Packages

Used few open source projects:

  • pycm - multi-class confusion matrix library.
  • seaborn - plotting library.
  • mlflow -platform for the end-to-end machine learning lifecycle.

Uninstall enum if incase facing issues while installing mlflow.

$ pip uninstall -y enum34

Run

Example:

$ x_train, x_test, y_train, y_test = getdata()
$ path = os.getcwd()
$ clf = classify(path=path, name="mltest", log=True, labels=["a", "b"])
$ report, fullreport = clf.run(x_train, y_train, x_test, y_test)

To view mlflow ui:

$ cd ../mlruns/path
$ mlfow ui

Open Ui in browser using

127.0.0.1:5000

Todos

  • CV,param gridsearch,tree based models
  • Regression Framework
  • Text Classification models, Sentiment Analyis , QA systems

License

MIT

Free Software, Hell Yeah!