The code and trained models of:
DeepFlux for Skeletons in the Wild, CVPR 2019 [Paper]
Please cite the related works in your publications if it helps your research:
@article{wang2018deepflux,
title={DeepFlux for Skeletons in the Wild},
author={Wang, Yukang and Xu, Yongchao and Tsogkas, Stavros and Bai, Xiang and Dickinson, Sven and Siddiqi, Kaleem},
journal={arXiv preprint arXiv:1811.12608},
year={2018}
}
-
Caffe and VGG-16 pretrained model [VGG_ILSVRC_16_layers.caffemodel]
-
Datasets: [SK-LARGE], [SYM-PASCAL]
-
OpenCV 3.4.3
-
MATLAB
cp Makefile.config.example Makefile.config
# adjust Makefile.config (for example, enable python layer)
make all -j16
# make sure to include $CAFFE_ROOT/python to your PYTHONPATH.
make pycaffe
Please refer to Caffe Installation to ensure other dependencies.
# download datasets and pretrained model then
mkdir data && mv [your_dataset_folder] data/
mkdir models && mv [your_pretrained_model] models/
# data augmentation
cd data/[your_dataset_folder]
matlab -nodisplay -r "run augmentation.m; exit"
# an example on SK-LARGE dataset
cd examples/DeepFlux/
python train.py --gpu [your_gpu_id] --dataset sklarge --initmodel ../../models/VGG_ILSVRC_16_layers.caffemodel
# an example on SK-LARGE dataset
cd evaluation/
./eval.sh ../../data/SK-LARGE/images/test ../../data/SK-LARGE/groundTruth/test ../../models/sklarge_iter_40000.caffemodel
Backbone | F-measure | Comment & Link |
---|---|---|
VGG-16 | 0.732 | CVPR submission [Google drive] |
VGG-16 | 0.735 | different_lr [Available soon] |
ResNet-101 | 0.752 | different_lr [Available soon] |
Backbone | F-measure | Comment & Link |
---|---|---|
VGG-16 | 0.502 | CVPR submission [Google drive] |
VGG-16 | 0.558 | different_lr [Available soon] |
ResNet-101 | 0.584 | different_lr [Available soon] |
*different_lr means different learning rates for backbone and additional layers
*lambda=0.4, k1=3, k2=4 for all models