Groma: Localized Visual Tokenization for Grounding Multimodal Large Language Models
Chuofan Ma, Yi Jiang, Jiannan Wu, Zehuan Yuan, Xiaojuan Qi
Groma is an MLLM with exceptional region understanding and visual grounding capabilities. It can take user-defined region inputs (boxes) as well as generate long-form responses that are grounded to visual context.
Groma presents a novel paradigm of grounded MLLMs. (a) LLM for localization (e.g., Kosmos-2, Shikra); (b) External modules for localization (e.g., Lisa); and (c) Visual tokenier for localization (Groma).
State-of-the-art performance on referring expression comprehension (REC) benchmarks among multimodal large language models.
Method | RefCOCO | RefCOCO+ | RefCOCOg | Avergae | |||||
---|---|---|---|---|---|---|---|---|---|
val | testA | testB | val | testA | testB | val | test | ||
Shikra | 87.01 | 90.61 | 80.24 | 81.60 | 87.36 | 72.12 | 82.27 | 82.19 | 82.93 |
Ferret | 87.49 | 91.35 | 82.45 | 80.78 | 87.38 | 73.14 | 83.93 | 84.76 | 83.91 |
MiniGPT-v2 | 88.69 | 91.65 | 85.33 | 79.97 | 85.12 | 74.45 | 84.44 | 84.66 | 84.29 |
Qwen-VL | 89.36 | 92.26 | 85.34 | 83.12 | 88.25 | 77.21 | 85.58 | 85.48 | 85.83 |
Groma | 89.53 | 92.09 | 86.26 | 83.90 | 88.91 | 78.05 | 86.37 | 87.01 | 86.52 |
Clone the repository
git clone https://github.com/FoundationVision/Groma.git
cd Groma
Create the conda environment and install dependencies
conda create -n groma python=3.9 -y
conda activate groma
conda install pytorch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 pytorch-cuda=11.8 -c pytorch -c nvidia
pip install --upgrade pip # enable PEP 660 support
pip install -e .
cd mmcv
MMCV_WITH_OPS=1 pip install -e .
cd ..
Install falsh-attention for training
pip install ninja
pip install flash-attn --no-build-isolation
To play with Groma, please download the model weights from huggingface.
We additionally provide pretrained checkpoints from intermediate training stages. You can start from any point to customize training.
Training stage | Required checkpoints |
---|---|
Detection pretraining | DINOv2-L |
Alignment pretraining | Vicuna-7b-v1.5, Groma-det-pretrain |
Instruction finetuning | Groma-7b-pretrain |
We provide instructions to download datasets used at different training stages of Groma, including Groma Instruct, a 30k viusally grounded conversation dataset constructed with GPT-4V. You don't have to download all of them unless you want to train Groma from scratch. Please follow instructions in DATA.md to prepare datasets.
Training stage | Data types | Datasets |
---|---|---|
Detection pretraining | Detection | COCO, Objects365, OpenImages, V3Det, SA1B |
Alignment pretraining | Image caption | ShareGPT-4V-PT |
Grounded caption | Flickr30k Entities | |
Region caption | Visual Genome, RefCOCOg | |
REC | COCO, RefCOCO/g/+, Grit-20m | |
Instruction finetuning | Grounded caption | Flickr30k Entities |
Region caption | Visual Genome, RefCOCOg | |
REC | COCO, RefCOCO/g/+ | |
Instruction following | Groma Instruct, LLaVA Instruct, ShareGPT-4V |
For detection pretraining, please run
bash scripts/det_pretrain.sh {path_to_dinov2_ckpt} {output_dir}
For alignment pretraining, please run
bash scripts/vl_pretrain.sh {path_to_vicuna_ckpt} {path_to_groma_det_pretrain_ckpt} {output_dir}
For instruction finetuning, please run
bash scripts/vl_finetune.sh {path_to_groma_7b_pretrain_ckpt} {output_dir}
To test on single image with 4-bit quantization, you can run
python -m groma.eval.run_groma \
--model-name {path_to_groma_7b_finetune} \
--image-file {path_to_img} \
--query {user_query} \
--quantized
from groma.model.groma import GromaModel
from transformers import BitsAndBytesConfig
model_name = 'path-to-checkpoint-dir'
kwargs = {'quantization_config':BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_quant_storage=torch.uint8,
bnb_4bit_use_double_quant=False,
bnb_4bit_quant_type='nf4'
)
}
model = GromaModel.from_pretrained(model_name, **kwargs)
# Add autocast before generate as the quantization can generate typing problems
with torch.autocast(device_type="cuda"):
outputs = model.generate( ... )
For evaluation, please refer to EVAL.md for more details.
If you find this repo useful for your research, feel free to give us a star ⭐ or cite our paper:
@misc{Groma,
title={Groma: Localized Visual Tokenization for Grounding Multimodal Large Language Models},
author={Chuofan Ma and Yi Jiang and Jiannan Wu and Zehuan Yuan and Xiaojuan Qi},
year={2024},
eprint={2404.13013},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
Groma is built upon the awesome works LLaVA and GPT4ROI.
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.