/2021_06_Deep_Learning_tutorial

Repositorio para el curso de "Deep Learning con Imágenes - Colombia 2021"

Primary LanguageJupyter NotebookMIT LicenseMIT

Binder

2021 Deep Learning with Images

Tutoriales y notebooks dedicados al aprendizaje de Deep Learning e imágenes.
Author Victor Calderon [homepage]
Dates June 28 - July 2, 2021
Documentation Link

Description

El siguiente set de tutoriales forma parte de la 2da semana de cursos del Instituto Konrad Lorenz.

En estos tutoriales, se cubrirán los siguientes temas:

  • Introducción a Pytorch
  • Como crear un model de Deep Learning orientado a imágines
    1. La estructura de un modelo y como "entrenar" un modelo
    2. Conceptos y estructuras de Pytorch que se usan dentro de un modelo.
  • Introducción a segmentation de imágenes.
  • Introducción a Transfer Learning.

También se discutirán prácticas comunes de como lidiar con modelos de Deep Learning, y sobre mejor prácticas para estructurar la data.

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── models             <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── src                <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts to train models and then use trained models to make
│   │   │                 predictions
│   │   ├── predict_model.py
│   │   └── train_model.py
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io

Project based on the cookiecutter data science project template. #cookiecutterdatascience