/data_hacks

Command line utilities for data analysis

Primary LanguagePython

data_hacks

Command line utilities for data analysis

Installing: pip install data_hacks

Installing from github pip install -e git://github.com/bitly/data_hacks.git#egg=data_hacks

Installing from source python setup.py install

data_hacks are friendly. Ask them for usage information with --help

histogram.py

A utility that parses input data points and outputs a text histogram

Example:

$ cat /tmp/data | histogram.py --percentage --max=1000 --min=0
# NumSamples = 60; Min = 0.00; Max = 1000.00
# 1 value outside of min/max
# Mean = 332.666667; Variance = 471056.055556; SD = 686.335236; Median 191.000000
# each ∎ represents a count of 1
    0.0000 -   100.0000 [    28]: ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎ (46.67%)
  100.0000 -   200.0000 [     2]: ∎∎ (3.33%)
  200.0000 -   300.0000 [     2]: ∎∎ (3.33%)
  300.0000 -   400.0000 [     8]: ∎∎∎∎∎∎∎∎ (13.33%)
  400.0000 -   500.0000 [     8]: ∎∎∎∎∎∎∎∎ (13.33%)
  500.0000 -   600.0000 [     7]: ∎∎∎∎∎∎∎ (11.67%)
  600.0000 -   700.0000 [     3]: ∎∎∎ (5.00%)
  700.0000 -   800.0000 [     0]:  (0.00%)
  800.0000 -   900.0000 [     1]: ∎ (1.67%)
  900.0000 -  1000.0000 [     0]:  (0.00%)

ninety_five_percent.py

A utility script that takes a stream of decimal values and outputs the 95% time.

This is useful for finding the 95% response time from access logs.

Example (assuming response time is the last column in your access log):

$ cat access.log | awk '{print $NF}' | ninety_five_percent.py

sample.py

Filter a stream to a random sub-sample of the stream

Example:

$ cat access.log | sample.py 10% | post_process.py

run_for.py

Pass through data for a specified amount of time

Example:

$ tail -f access.log | run_for.py 10s | post_process.py

bar_chart.py

Generate an ascii bar chart for input data (this is like a visualization of uniq -c)

$ cat data | bar_chart.py
# each ∎ represents a count of 1. total 63
14:40 [    49] ∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎∎
14:41 [    14] ∎∎∎∎∎∎∎∎∎∎∎∎∎∎

bar_chart.py and histogram.py also support ingesting pre-aggregated values. Simply provide a two column input of count<whitespace>value for -a or value<whitespace>count for -A:

$ cat data | uniq -c | bar_chart.py -a

This is very convenient if you pull data out, say Hadoop or MySQL already aggregated.