A probabilistic deep machinery that models the traffic characteristics of hosts on a network and effectively forecasts the network traffic patterns, such as load spikes.
|- data/
|- ntpp /
|- models/
|- data.py - Declare the Data Class
|- model.py - Declare the model
|- plotter.py - Function to plot the Loss vs Epoch
|- predicter.py - Main function to train and validate the data
|- scorer.py - Functions to find the discriminator and generative loss
|- utils.py - Some useful functions
-
Prepare data : Use
tshark
orwireshark
to convert.pcap
to.csv
-
Download:
git clone https://github.com/vedic-partap/NTPP.git cd NTPP
-
Install Requirements:
pip install -r requirements.txt
-
Extract Data:
python ntpp/test.py
-
Train Model:
python -m ntpp.models.predicter
Output
Arguments | Decription |
---|---|
events | Event File containing the vents for each host |
times | File containing the time of the events for each host |
save_dir | Root dir for saving models |
int_count | Number of intervals |
test_size | Train Test split. e.g. 0.2 means 20% Test 80% Train |
time_step | Time Step |
batch_size | Size of the batch |
element_size | Element Size |
h | Hidden layer Size |
nl | Number of RNN Steps |
seed | SEED |
mode | What do you want ? train |
epochs | Number of epochs |
workers | Number of workers |
learning_rate | Learning rate for the optimiser |
metric | Metric used in discriminator loss |
is_cuda | use GPU or not |
optim | Optimiser |
e.g. python -m ntpp.models.predicter --epochs 500 --batch_size 11 --optim Adam
Use Python 3
- MACCDC : https://www.netresec.com/?page=MACCDC
- ISTS: https://www.netresec.com/?page=ISTS
- WRCCDC: https://archive.wrccdc.org/pcaps/
- ISACDC: http://www.westpoint.edu/crc/SitePages/DataSets.aspx
- WorldCup98: http://ita.ee.lbl.gov/html/contrib/WorldCup.html
- UNIDC: http://pages.cs.wisc.edu/~tbenson/IMC10_Data.html
- snu/bbittorrent: https://crawdad.org/~crawdad/snu/bittorrent/20110125/tcpdump/
In case of any doubt or if you want to contribute, contact vedicpartap1999@gmail.com