A series of mainstream machine learning algorithms implement on FPGA.
__ __ _ _ \ \ / /__ _ __(_)_ __ ___ __ _| | _____ \ \ / / _ \ '__| | '_ ` _ \ / _` | |/ / _ \ \ V / __/ | | | | | | | | (_| | < __/ \_/ \___|_| |_|_| |_| |_|\__,_|_|\_\___|
Configurable parameters
ANN | DT | k-NN | SVM |
---|---|---|---|
Data width(max=13); Number of in-puts(max=16); Number of hidden lay-ers(max=4); Number of neurons in each hidden lay-er(max=8); Number of tar-gets(max=16); Activation functions |
Data width(max=13); Number of depth(max=5); Number of leaf nodes(max=64); Number of targets(max=16) |
Data width(max=13); Number of in-puts(max=16); Number of neigh-bors(max=16); Number of tar-gets(max=16) |
Data width(max=13); Number of in-puts(max=16); Number of tar-gets(max=16) |