PyPMML is a Python PMML scoring library, it really is the Python API for PMML4S.
- Java >= 1.8
- Python 2.7 or >= 3.5
pip install pypmml
Or install the latest version from github:
pip install --upgrade git+https://github.com/autodeployai/pypmml.git
-
Load model from various sources, e.g. readable, file path, string, or an array of bytes.
from pypmml import Model # The model is from http://dmg.org/pmml/pmml_examples/KNIME_PMML_4.1_Examples/single_iris_dectree.xml model = Model.load('single_iris_dectree.xml')
-
Call
predict(data)
to predict new values that can be in different types, e.g. dict, list, json, ndarray of NumPy, Series or DataFrame of Pandas.data
in dict:
>>> model.predict({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2}) {'probability_Iris-setosa': 1.0, 'probability_Iris-versicolor': 0.0, 'probability': 1.0, 'predicted_class': 'Iris-setosa', 'probability_Iris-virginica': 0.0, 'node_id': '1'}
data
in list:
NOTE: the order of values must match the input names, and the order of results always matches the output names.
>>> model.inputNames ['sepal_length', 'sepal_width', 'petal_length', 'petal_width'] >>> model.predict([5.1, 3.5, 1.4, 0.2]) ['Iris-setosa', 1.0, 1.0, 0.0, 0.0, '1'] >>> model.outputNames ['predicted_class', 'probability', 'probability_Iris-setosa', 'probability_Iris-versicolor', 'probability_Iris-virginica', 'node_id']
data
inrecords
json:
>>> model.predict('[{"sepal_length": 5.1, "sepal_width": 3.5, "petal_length": 1.4, "petal_width": 0.2}]') [{"probability":1.0,"probability_Iris-versicolor":0.0,"probability_Iris-setosa":1.0,"probability_Iris-virginica":0.0,"predicted_class":"Iris-setosa","node_id":"1"}]
data
insplit
json:
>>> model.predict('{"columns": ["sepal_length", "sepal_width", "petal_length", "petal_width"], "data": [[5.1, 3.5, 1.4, 0.2]]}') {"columns":["predicted_class","probability","probability_Iris-setosa","probability_Iris-versicolor","probability_Iris-virginica","node_id"],"data":[["Iris-setosa",1.0,1.0,0.0,0.0,"1"]]}
data
in ndarray of NumPy:
NOTE: as the list above, the order of ndarray values must match the input names, and the order of results always matches the output names.
>>> import numpy as np >>> model.predict(np.array([5.1, 3.5, 1.4, 0.2])) ['Iris-setosa', 1.0, 1.0, 0.0, 0.0, '1'] >>> >>> model.predict(np.array([[5.1, 3.5, 1.4, 0.2], [7, 3.2, 4.7, 1.4]])) [['Iris-setosa', 1.0, 1.0, 0.0, 0.0, '1'], ['Iris-versicolor', 0.9074074074074074, 0.0, 0.9074074074074074, 0.09259259259259259, '3']]
data
in Series of Pandas:
>>> import pandas as pd >>> model.predict(pd.Series({'sepal_length': 5.1, 'sepal_width': 3.5, 'petal_length': 1.4, 'petal_width': 0.2})) node_id 1 predicted_class Iris-setosa probability 1 probability_Iris-setosa 1 probability_Iris-versicolor 0 probability_Iris-virginica 0 Name: 0, dtype: object
data
in DataFrame of Pandas:
>>> import pandas as pd >>> data = pd.read_csv('Iris.csv') # The data is from here: http://dmg.org/pmml/pmml_examples/Iris.csv >>> model.predict(data) node_id predicted_class probability probability_Iris-setosa probability_Iris-versicolor probability_Iris-virginica 0 1 Iris-setosa 1.000000 1.0 0.000000 0.000000 1 1 Iris-setosa 1.000000 1.0 0.000000 0.000000 2 1 Iris-setosa 1.000000 1.0 0.000000 0.000000 3 1 Iris-setosa 1.000000 1.0 0.000000 0.000000 4 1 Iris-setosa 1.000000 1.0 0.000000 0.000000 .. ... ... ... ... ... ... 145 10 Iris-virginica 0.978261 0.0 0.021739 0.978261 146 10 Iris-virginica 0.978261 0.0 0.021739 0.978261 147 10 Iris-virginica 0.978261 0.0 0.021739 0.978261 148 10 Iris-virginica 0.978261 0.0 0.021739 0.978261 149 10 Iris-virginica 0.978261 0.0 0.021739 0.978261
See the PMML4S project. PMML4S is a PMML scoring library for Scala. It provides both Scala and Java Evaluator API for PMML.
See the PMML4S-Spark project. PMML4S-Spark is a PMML scoring library for Spark as SparkML Transformer.
See the PyPMML-Spark project. PyPMML-Spark is a Python PMML scoring library for PySpark as SparkML Transformer, it really is the Python API for PMML4s-Spark.
See the AI-Serving project. AI-Serving is serving AI/ML models in the open standard formats PMML and ONNX with both HTTP and gRPC endpoints.
See the DaaS system that deploys AI/ML models in production at scale on Kubernetes.
If you have any questions about the PyPMML library, please open issues on this repository.
Feedback and contributions to the project, no matter what kind, are always very welcome.
PyPMML is licensed under APL 2.0.