Pinned Repositories
angel_nest
Project code name: Angel Nest. :)
asaph
Fork from http://www.phoboslab.org/projects/asaph
baseline
HTML and CSS baseline grid tools and examples
bootstrap
CSS toolkit from Twitter
ChimeraGS
A base stylesheet system to get me started
Crash-Test-Dummies
For old times sake
Demo
A demo app for dummies
dotfiles
.files
dropship
Instantly transfer files between Dropbox accounts using only their hashes.
kwirita
A dummy project for exploring GitHub
voidnothings's Repositories
voidnothings/if-im-gone
A cheat sheet for if I am somehow incapacitated.
voidnothings/pace
Automatically add a progress bar to your site. #hubspot-open-source
voidnothings/polaris
Shopify’s product component library
voidnothings/apple_sk8
voidnothings/Assemblies-of-putative-SARS-CoV2-spike-encoding-mRNA-sequences-for-vaccines-BNT-162b2-and-mRNA-1273
RNA vaccines have become a key tool in moving forward through the challenges raised both in the current pandemic and in numerous other public health and medical challenges. With the rollout of vaccines for COVID-19, these synthetic mRNAs have become broadly distributed RNA species in numerous human populations. Despite their ubiquity, sequences are not always available for such RNAs. Standard methods facilitate such sequencing. In this note, we provide experimental sequence information for the RNA components of the initial Moderna (https://pubmed.ncbi.nlm.nih.gov/32756549/) and Pfizer/BioNTech (https://pubmed.ncbi.nlm.nih.gov/33301246/) COVID-19 vaccines, allowing a working assembly of the former and a confirmation of previously reported sequence information for the latter RNA. Sharing of sequence information for broadly used therapeutics has the benefit of allowing any researchers or clinicians using sequencing approaches to rapidly identify such sequences as therapeutic-derived rather than host or infectious in origin. For this work, RNAs were obtained as discards from the small portions of vaccine doses that remained in vials after immunization; such portions would have been required to be otherwise discarded and were analyzed under FDA authorization for research use. To obtain the small amounts of RNA needed for characterization, vaccine remnants were phenol-chloroform extracted using TRIzol Reagent (Invitrogen), with intactness assessed by Agilent 2100 Bioanalyzer before and after extraction. Although our analysis mainly focused on RNAs obtained as soon as possible following discard, we also analyzed samples which had been refrigerated (~4 ℃) for up to 42 days with and without the addition of EDTA. Interestingly a substantial fraction of the RNA remained intact in these preparations. We note that the formulation of the vaccines includes numerous key chemical components which are quite possibly unstable under these conditions-- so these data certainly do not suggest that the vaccine as a biological agent is stable. But it is of interest that chemical stability of RNA itself is not sufficient to preclude eventual development of vaccines with a much less involved cold-chain storage and transportation. For further analysis, the initial RNAs were fragmented by heating to 94℃, primed with a random hexamer-tailed adaptor, amplified through a template-switch protocol (Takara SMARTerer Stranded RNA-seq kit), and sequenced using a MiSeq instrument (Illumina) with paired end 78-per end sequencing. As a reference material in specific assays, we included RNA of known concentration and sequence (from bacteriophage MS2). From these data, we obtained partial information on strandedness and a set of segments that could be used for assembly. This was particularly useful for the Moderna vaccine, for which the original vaccine RNA sequence was not available at the time our study was carried out. Contigs encoding full-length spikes were assembled from the Moderna and Pfizer datasets. The Pfizer/BioNTech data [Figure 1] verified the reported sequence for that vaccine (https://berthub.eu/articles/posts/reverse-engineering-source-code-of-the-biontech-pfizer-vaccine/), while the Moderna sequence [Figure 2] could not be checked against a published reference. RNA preparations lacking dsRNA are desirable in generating vaccine formulations as these will minimize an otherwise dramatic biological (and nonspecific) response that vertebrates have to double stranded character in RNA (https://www.nature.com/articles/nrd.2017.243). In the sequence data that we analyzed, we found that the vast majority of reads were from the expected sense strand. In addition, the minority of antisense reads appeared different from sense reads in lacking the characteristic extensions expected from the template switching protocol. Examining only the reads with an evident template switch (as an indicator for strand-of-origin), we observed that both vaccines overwhelmingly yielded sense reads (>99.99%). Independent sequencing assays and other experimental measurements are ongoing and will be needed to determine whether this template-switched sense read fraction in the SmarterSeq protocol indeed represents the actual dsRNA content in the original material. This work provides an initial assessment of two RNAs that are now a part of the human ecosystem and that are likely to appear in numerous other high throughput RNA-seq studies in which a fraction of the individuals may have previously been vaccinated. ProtoAcknowledgements: Thanks to our colleagues for help and suggestions (Nimit Jain, Emily Greenwald, Lamia Wahba, William Wang, Amisha Kumar, Sameer Sundrani, David Lipman, Bijoyita Roy). Figure 1: Spike-encoding contig assembled from BioNTech/Pfizer BNT-162b2 vaccine. Although the full coding region is included, the nature of the methodology used for sequencing and assembly is such that the assembled contig could lack some sequence from the ends of the RNA. Within the assembled sequence, this hypothetical sequence shows a perfect match to the corresponding sequence from documents available online derived from manufacturer communications with the World Health Organization [as reported by https://berthub.eu/articles/posts/reverse-engineering-source-code-of-the-biontech-pfizer-vaccine/]. The 5’ end for the assembly matches the start site noted in these documents, while the read-based assembly lacks an interrupted polyA tail (A30(GCATATGACT)A70) that is expected to be present in the mRNA.
voidnothings/autoprefixer
Parse CSS and add vendor prefixes to rules by Can I Use
voidnothings/coe
Postmortem / Correction of Error (CoE) template
voidnothings/design-system
Salesforce Lightning Design System
voidnothings/emmet2.tmbundle
Emmet abbreviation expander Textmate bundle
voidnothings/Everpix-Intelligence
Uncensored Everpix metrics, financials and business data for your perusing
voidnothings/expand-abbreviation
Reference implementation of Emmet abbreviation expander
voidnothings/laravel-tutorial-codeheaps
Source code for simple laravel blog tutorial
voidnothings/palmos-dkjr
PalmOS - game and watch clone - DKJR (Donkey Kong Jr)
voidnothings/palmos-dkung
PalmOS - game and watch clone - DKung (Donkey Kong - Dual Screen)
voidnothings/palmos-hexxagon
PalmOS - clone - Hexxagon (Ataxx)
voidnothings/palmos-hoards
PalmOS - clone - Hoards of the Deep Realm (Loderunner)
voidnothings/palmos-lemmings
PalmOS - clone - Lemmings (Lemmings)
voidnothings/palmos-liberty
PalmOS - emulator - Liberty (GameBoy Emulator)
voidnothings/palmos-maryobros
PalmOS - clone - Maryobros (Mario Bros)
voidnothings/palmos-oktopus
PalmOS - game and watch clone - Oktopus (Octopus)
voidnothings/palmos-parashoot
PalmOS - game and watch clone - Parashoot (Parachute)
voidnothings/palmos-phire
PalmOS - game and watch clone - Phire (Fire!)
voidnothings/powereditor
An HTML5 based application for managing Facebook ads.
voidnothings/product-csvs
Shopify product CSVs with beautiful images to seed your store with product data.
voidnothings/rizzo
UI Layer for lonelyplanet.com
voidnothings/seed
voidnothings/shopify-scraper
Scrape for shopify website updates concurrently with the use of the standard thread library, libcurl, and rapidjson in C++
voidnothings/skyline
Basic Skyline Starter HTML and SCSS
voidnothings/squoosh
Make images smaller using best-in-class codecs, right in the browser.
voidnothings/yourown-bootstrap4
Create your own Bootstrap4 theme http://bdavidxyz.github.io/yourown-bootstrap4/