/zalo_ltr_2021

Source code for Zalo AI 2021 submission

Primary LanguagePython

zalo_ltr_2021

Source code for Zalo AI 2021 submission

Solution:

Pipeline

We use the pipepline in the picture below:

Our pipeline is combination of BM25 and Sentence Transfromer. Let us describe our approach briefly:
  • Step 1: We trained a BM25 model for searching similar pair. We used BM25 to create negative sentence pairs for training Sentence Transformer in Step 3.
  • Step 1: We trained Masked Language Model using legal corpus from training data. Our masked languague models are
VinAI/PhoBert-Large
FPTAI/ViBert
  • Step 3: Train Sentence Transformer + Contrative loss with 4 settings:
1. MLM PhoBert Large -> Sentence Transformer 
2. MLM ViBert -> Sentence Transformer
3. MLM PhoBert Large -> Condenser -> Sentence Transformer
4. MLM PhoBert Large -> Co-Condenser -> Sentence Transformer
  • Step 4: Using 4 models from step 3 to generate corresponding hard negative sentences for training round 2 in step 5.
  • Step 5: Training 4 above models round 2.
  • Step 5: Ensemble 4 models obtained from step 5.

Data

Raw data is in zac2021-ltr-data

Create Folder

Create a new folder for generated data for training mkdir generated_data

Train BM 25

To train BM25: python bm25_train.py Use load_docs to save time for later run: python bm25_train.py --load_docs

To evaluate: python bm25_create_pairs.py This step will also create top_k negative pairs from BM25. We choose top_k= 20, 50 Pairs will be saved to: pair_data/

These pairs will be used to train round 1 Sentence Transformer model

Create corpus:

Run python create_corpus.txt This step will create:

  • corpus.txt (for finetune language model)
  • cocondenser_data.json (for finetune CoCondenser model)

Finetune language model using Huggingface

Pretrained model:

  • viBERT: FPTAI/vibert-base-cased
  • vELECTRA: FPTAI/velectra-base-discriminator-cased
  • phobert-base: vinai/phobert-base
  • phobert-large: vinai/phobert-large

$MODEL_NAME= phobert-large $DATA_FILE= corpus.txt $SAVE_DIR= /path/to/your/save/directory

Run the following cmd to train Masked Language Model:

python run_mlm.py \
    --model_name_or_path $MODEL_NAME \
    --train_file $DATA_FILE \
    --do_train \
    --do_eval \
    --output_dir $SAVE_DIR \
    --line_by_line \
    --overwrite_output_dir \
    --save_steps 2000 \
    --num_train_epochs 20 \
    --per_device_eval_batch_size 32 \
    --per_device_train_batch_size 32

Train condenser and cocondenser from language model checkpoint

Original source code here: https://github.com/luyug/Condenser (we modified several lines of code to make it compatible with current version of transformers)

Create data for Condenser:

python helper/create_train.py --tokenizer_name $MODEL_NAME --file $DATA_FILE --save_to $SAVE_CONDENSER \ --max_len $MAX_LENGTH 

$MODEL_NAME=vinai/phobert-large
$MAX_LENGTH=256
$DATA_FILE=../generated_data/corpus.txt
$SAVE_CONDENSER=../generated_data/

$MODEL_NAME checkpoint from finetuned language model

python run_pre_training.py \
  --output_dir $OUTDIR \
  --model_name_or_path $MODEL_NAME \
  --do_train \
  --save_steps 2000 \
  --per_device_train_batch_size $BATCH_SIZE \
  --gradient_accumulation_steps $ACCUMULATION_STEPS \
  --fp16 \
  --warmup_ratio 0.1 \
  --learning_rate 5e-5 \
  --num_train_epochs 8 \
  --overwrite_output_dir \
  --dataloader_num_workers 32 \
  --n_head_layers 2 \
  --skip_from 6 \
  --max_seq_length $MAX_LENGTH \
  --train_dir $SAVE_CONDENSER \
  --weight_decay 0.01 \
  --late_mlm

We use this setting to run Condenser:

python run_pre_training.py   \
    --output_dir saved_model_1/  \
    --model_name_or_path ../Legal_Text_Retrieval/lm/large/checkpoint-30000   \
    --do_train   
    --save_steps 2000   \
    --per_device_train_batch_size 32   \
    --gradient_accumulation_steps 4   \
    --fp16   \
    --warmup_ratio 0.1   \
    --learning_rate 5e-5   \
    --num_train_epochs 8   \
    --overwrite_output_dir   \
    --dataloader_num_workers 32   \
    --n_head_layers 2   \
    --skip_from 6   \
    --max_seq_length 256   \
    --train_dir ../generated_data/   \
    --weight_decay 0.01   \
    --late_mlm

Train cocodenser:

First, we create data for cocodenser

python helper/create_train_co.py \
    --tokenizer vinai/phobert-large \
    --file ../generated_data/cocondenser/corpus.txt.json \
    --save_to data/large_co/corpus.txt.json \

Run the following cmd to train co-condenser model:

python  run_co_pre_training.py   \
    --output_dir saved_model/cocondenser/   \
    --model_name_or_path $CODENSER_CKPT   \
    --do_train   \
    --save_steps 2000   \
    --model_type bert   \
    --per_device_train_batch_size 32   \
    --gradient_accumulation_steps 1   \
    --fp16   \
    --warmup_ratio 0.1   \
    --learning_rate 5e-5   \
    --num_train_epochs 10   \
    --dataloader_drop_last   \
    --overwrite_output_dir   \
    --dataloader_num_workers 32   \
    --n_head_layers 2   \
    --skip_from 6   \
    --max_seq_length 256   \
    --train_dir ../generated_data/cocondenser/   \
    --weight_decay 0.01   \
    --late_mlm  \
    --cache_chunk_size 32 \
    --save_total_limit 1

Train Sentence Transformer

Round 1: using negative pairs of sentence generated from BM25

For each Masked Language Model, we trained a sentence transformer corresponding to it Run the following command to train round 1 of sentence bert model

Note: Use cls_pooling for condenser and cocodenser

python train_sentence_bert.py 
    --pretrained_model /path/to/your/pretrained/mlm/model\
    --max_seq_length 256 \
    --pair_data_path /path/to/your/negative/pairs/data\
    --round 1 \
    --num_val $NUM_VAL\
    --epochs 10\
    --saved_model /path/to/your/save/model/directory\
    --batch_size 32\

here we pick $NUM_VAL is 50 * 20 and 50 * 50 for top 20 and 50 pairs data respectively

Round 2: using hard negative pairs create from Round 1 model

  • Step 1: Run the following cmd to generate hard negative pairs from round 1 model:
python hard_negative_mining.py \
    --model_path /path/to/your/sentence/bert/model\
    --data_path /path/to/the/lagal/corpus/json\
    --save_path /path/to/directory/to/save/neg/pairs\
    --top_k top_k_negative_pair

Here we pick top k is 20 and 50.

  • Use the data generated from step 1 to train round 2 of sentence bert model for each model from round 1: To train round 2, please use the following command:
python train_sentence_bert.py 
    --pretrained_model /path/to/your/pretrained/mlm/model\
    --max_seq_length 256 \
    --pair_data_path /path/to/your/negative/pairs/data\
    --round 2 \
    --num_val $NUM_VAL\
    --epochs 5\
    --saved_model /path/to/your/save/model/directory\
    --batch_size 32\

Tips: Use small learning rate for model convergence

Prediction

For reproducing result.

To get the prediction, we use 4 2-round trained models with mlm pretrained is Large PhoBert, PhoBert-Large-Condenser, Pho-Bert-Large-CoCondenser and viBert-based. Final models and their corresponding weights are below:

  • 1 x PhoBert-Large-Round2: 0.1
  • 1 x Condenser-PhoBert-Large-round2: 0.3
  • 1 x Co-Condenser-PhoBert-Large-round2: 0.4
  • 1 x FPTAI/ViBert-base-round2: 0.2

doc_refers_saved.pkl and legal_dict.json are generated in traning bm25 process and create corpus, respectively. We also provide a file to re-generate it before inference.

python3 create_corpus.py --data zac2021-ltr-data --save_dir generated_data
python3 create_doc_refers.py --raw_data zac2021-ltr-data --save_path generated_data

We also provide embedding vectors which is pre-encoded by ensemble model in encoded_legal_data.pkl. If you want to verified and get the final submission, please run the following command:

python3 predict.py --data /path/to/test/json/data --legal_data generated_data/doc_refers_saved.pkl --precode

If you already have encoded_legal_data.pkl, run the following command:

python3 predict.py --data /path/to/test/json/data --legal_data generated_data/doc_refers_saved.pkl

Just for inference

Run the following command

chmod +x predict.sh
./predict.sh

post-processing techniques:

  • fix typo of nd-cp
  • multiply cos-sim score with score from bm25, we pick score-range = [max-score - 2.6, max-score] and pick top 5 sentences for a question with multiple answers .

Methods used but not work

  • Training Round 3 for Sentence Transformer.
  • Pseudo Label: Improve our single model performace but hurt ensembel preformance.

Contributors:

Thanks our teamates for great works: Dzung Le, Hong Nguyen