The R package gdalcubes
aims at making analyses of large satellite
image collections easier, faster, more intuitive, and more interactive.
The package represents the data as regular raster data cubes with
dimensions bands
, time
, y
, and x
and hides complexities in the
data due to different spatial resolutions,map projections, data formats,
and irregular temporal sampling.
- Read and process multitemporal, multispectral Earth observation image collections as regular raster data cubes by applying on-the-fly reprojection, rescaling, cropping, and resampling.
- Work with existing Earth observation imagery on local disks or cloud storage without the need to maintain a 2nd copy of the data.
- Apply user-defined R functions on data cubes.
- Execute data cube operation chains using parallel processing and lazy evaluation.
Install from CRAN with:
install.packages("gdalcubes")
Installation from sources is easiest with
remotes::install_git("https://github.com/appelmar/gdalcubes_R")
Please make sure that the git command line client is available on your system. Otherwise, the above command might not clone the gdalcubes C++ library as a submodule under src/gdalcubes.
The package builds on the external libraries GDAL, NetCDF, SQLite, and curl.
On Windows, you will need Rtools. System libraries are automatically downloaded from rwinlib.
Please install the system libraries e.g. with the package manager of your Linux distribution. Also make sure that you are using a recent version of GDAL (>2.3.0). On Ubuntu, the following commands install all libraries.
sudo add-apt-repository ppa:ubuntugis/ppa && sudo apt-get update
sudo apt-get install libgdal-dev libnetcdf-dev libcurl4-openssl-dev libsqlite3-dev libudunits2-dev
Use Homebrew to install system libraries with
brew install pkg-config
brew install gdal
brew install netcdf
brew install libgit2
brew install udunits
brew install curl
brew install sqlite
if (!dir.exists("L8_Amazon")) {
download.file("https://uni-muenster.sciebo.de/s/e5yUZmYGX0bo4u9/download", destfile = "L8_Amazon.zip")
unzip("L8_Amazon.zip", exdir = "L8_Amazon")
}
At first, we must scan all available images once, and extract some
metadata such as their spatial extent and acquisition time. The
resulting image collection is stored on disk, and typically consumes a
few kilobytes per image. Due to the diverse structure of satellite image
products, the rules how to derive the required metadata are formalized
as collection_formats. The package comes with predefined formats for
some Sentinel, Landsat, and MODIS products (see collection_formats()
to print a list of available formats).
library(gdalcubes)
## Using gdalcubes library version 0.2.3
gdalcubes_options(threads=8)
files = list.files("L8_Amazon", recursive = TRUE,
full.names = TRUE, pattern = ".tif")
length(files)
## [1] 1800
sum(file.size(files)) / 1024^2 # MiB
## [1] 1919.118
L8.col = create_image_collection(files, format = "L8_SR", out_file = "L8.db")
To create a regular raster data cube from the image collection, we
define the geometry of our targetr cube as a data cube view, using the
cube_view()
function. We define a simple overview, covering the full
spatiotemporal extent of the imagery at 1km x 1km pixel size where one
data cube cell represents a duration of one year. The provided
resampling and aggregation methods are used to spatially reproject,
crop, and rescale individual images and combine pixel values from many
images within one year respectively. The raster_cube()
function
returns a proxy object, i.e., it returns immediately without doing any
expensive
computations.
v.overview = cube_view(extent=L8.col, dt="P1Y", dx=1000, dy=1000, srs="EPSG:3857",
aggregation = "median", resampling = "bilinear")
raster_cube(L8.col, v.overview)
## A GDAL data cube proxy object
##
## Dimensions:
## low high count pixel_size chunk_size
## t 2013 2019 7 P1Y 16
## y -764014.387686915 -205014.387686915 559 1000 256
## x -6582280.06164712 -5799280.06164712 783 1000 256
##
## Bands:
## name offset scale nodata unit
## 1 AEROSOL 0 1 NaN
## 2 B01 0 1 NaN
## 3 B02 0 1 NaN
## 4 B03 0 1 NaN
## 5 B04 0 1 NaN
## 6 B05 0 1 NaN
## 7 B06 0 1 NaN
## 8 B07 0 1 NaN
## 9 PIXEL_QA 0 1 NaN
## 10 RADSAT_QA 0 1 NaN
We can apply (and chain) operations on data cubes:
suppressPackageStartupMessages(library(magrittr)) # for %>%
x = raster_cube(L8.col, v.overview) %>%
select_bands(c("B02","B03","B04")) %>%
reduce_time(c("median(B02)","median(B03)","median(B04)"))
x
## A GDAL data cube proxy object
##
## Dimensions:
## low high count pixel_size chunk_size
## t 2013 2013 1 P7Y 1
## y -764014.387686915 -205014.387686915 559 1000 256
## x -6582280.06164712 -5799280.06164712 783 1000 256
##
## Bands:
## name offset scale nodata unit
## 1 B02_median 0 1 NaN
## 2 B03_median 0 1 NaN
## 3 B04_median 0 1 NaN
plot(x, rgb=3:1, zlim=c(0,1200))
library(RColorBrewer)
raster_cube(L8.col, v.overview) %>%
select_bands(c("B04","B05")) %>%
apply_pixel(c("(B05-B04)/(B05+B04)"), names="NDVI") %>%
plot(zlim=c(0,1), nbreaks=10, col=brewer.pal(9, "YlGn"), key.pos=1)
Calling data cube operations always returns proxy objects,
computations are started lazily when users call e.g. plot()
.
Multitemporal data cubes can be animated (thanks to the magick package):
v.subarea.yearly = cube_view(extent=list(left=-6180000, right=-6080000, bottom=-550000, top=-450000,
t0="2014-01-01", t1="2018-12-31"), dt="P1Y", dx=50, dy=50,
srs="EPSG:3857", aggregation = "median", resampling = "bilinear")
raster_cube(L8.col, v.subarea.yearly) %>%
select_bands(c("B02","B03","B04")) %>%
animate(rgb=3:1, zlim=c(100,1000))
## format width height colorspace matte filesize density
## 1 gif 672 480 sRGB FALSE 0 72x72
## 2 gif 672 480 sRGB TRUE 0 72x72
## 3 gif 672 480 sRGB TRUE 0 72x72
## 4 gif 672 480 sRGB TRUE 0 72x72
## 5 gif 672 480 sRGB TRUE 0 72x72
Data cubes can be exported as single netCDF files with write_ncdf()
,
or as a collection of (possibly cloud-optimized) GeoTIFF files with
write_tif()
, where each time slice of the cube yields one GeoTIFF
file. Data cubes can also be converted to raster
or stars
objects:
suppressPackageStartupMessages(library(raster))
raster_cube(L8.col, v.overview) %>%
select_bands(c("B04","B05")) %>%
apply_pixel(c("(B05-B04)/(B05+B04)"), names="NDVI") %>%
write_tif() %>%
stack() -> x
x
## class : RasterStack
## dimensions : 559, 783, 437697, 7 (nrow, ncol, ncell, nlayers)
## resolution : 1000, 1000 (x, y)
## extent : -6582280, -5799280, -764014.4, -205014.4 (xmin, xmax, ymin, ymax)
## crs : +proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs
## names : cube_4f176cddecc32013, cube_4f176cddecc32014, cube_4f176cddecc32015, cube_4f176cddecc32016, cube_4f176cddecc32017, cube_4f176cddecc32018, cube_4f176cddecc32019
suppressPackageStartupMessages(library(stars))
raster_cube(L8.col, v.overview) %>%
select_bands(c("B04","B05")) %>%
apply_pixel(c("(B05-B04)/(B05+B04)"), names="NDVI") %>%
as_stars() -> y
## Warning: All elements of `...` must be named.
## Did you want `variables = c(variable)`?
y
## stars object with 3 dimensions and 1 attribute
## attribute(s), summary of first 1e+05 cells:
## NDVI
## Min. :-0.56
## 1st Qu.: 0.41
## Median : 0.72
## Mean : 0.57
## 3rd Qu.: 0.85
## Max. : 0.89
## NA's :79497
## dimension(s):
## from to offset delta refsys point
## x 1 783 -6582280 1000 +proj=merc +a=6378137 +b=... FALSE
## y 1 559 -205014 -1000 +proj=merc +a=6378137 +b=... FALSE
## time 1 7 NA NA POSIXct FALSE
## values
## x NULL [x]
## y NULL [y]
## time 2013-01-01,...,2019-01-01
To reduce the size of exported data cubes, compression and packing (conversion of doubles to smaller integer types) are supported.
Users can pass custom R functions to reduce_time()
and
apply_pixel()
. Below, we derive a greenest pixel composite by
returning RGB values from pixels with maximum NDVI for all pixel
time-series.
v.subarea.monthly = cube_view(view = v.subarea.yearly, dt="P1M", dx = 100, dy = 100,
extent = list(t0="2015-01", t0="2018-12"))
raster_cube(L8.col, v.subarea.monthly) %>%
select_bands(c("B02","B03","B04","B05")) %>%
apply_pixel(c("(B05-B04)/(B05+B04)"), names="NDVI", keep_bands=TRUE) %>%
reduce_time(names=c("B02","B03","B04"), FUN=function(x) {
if (all(is.na(x["NDVI",]))) return(rep(NA,3))
return (x[c("B02","B03","B04"), which.max(x["NDVI",])])
}) %>%
plot(rgb=3:1, zlim=c(100,1000))
Mask bands: Imagery that comes with existing masks (e.g. general pixel quality measures or cloud masks) can apply masks during the construction of the raster data cube, such that masked values will not contribute to data cube values.
Chunk streaming: Internally, data cubes are chunked. Users can
modify the size of chunks as an argument to the raster_cube()
function. This can be useful for performance tuning, or for applying
user-defined R functions independently over all chunks, by using the
chunk_apply()
function.
- There is no support for vector data cubes (stars has vector data cubes).
- Data cubes are limited to four dimensions (stars has cubes with any number of dimensions).
- Operations such as
reduce_space()
orwindow_time()
do not support user-defined functions at the moment. - Images must be orthorectified / regularly gridded, Sentinel-1 or Sentinel-5P products require additional preprocessing.
- Using gdalcubes in cloud infrastructures is still work in progress.
- Blog post on r-spatial.org
- Open access paper in the special issue on Earth observation data cubes of the data journal
- Some introductory slides