/happy-tools

Tools for dealing with hyper-spectral images.

Primary LanguagePythonMIT LicenseMIT

happy-tools

Python tools for dealing with hyperspectral images.

Installation

pip install git+https://github.com/wairas/happy-tools.git

Docker

For Docker images, please see docker/README.md.

User interfaces

Data Viewer

usage: happy-data-viewer [-h] [--base_folder BASE_FOLDER] [--sample SAMPLE]
                         [--repeat REPEAT] [-r INT] [-g INT] [-b INT] [-o INT]
                         [--listbox_selectbackground LISTBOX_SELECTBACKGROUND]
                         [--listbox_selectforeground LISTBOX_SELECTFOREGROUND]

Viewer for HAPPy data folder structures.

optional arguments:
  -h, --help            show this help message and exit
  --base_folder BASE_FOLDER
                        Base folder to display (default: None)
  --sample SAMPLE       The sample to load (default: None)
  --repeat REPEAT       The repeat to load (default: None)
  -r INT, --scale_r INT
                        the wave length to use for the red channel (default:
                        None)
  -g INT, --scale_g INT
                        the wave length to use for the green channel (default:
                        None)
  -b INT, --scale_b INT
                        the wave length to use for the blue channel (default:
                        None)
  -o INT, --opacity INT
                        the opacity to use (0-100) (default: None)
  --listbox_selectbackground LISTBOX_SELECTBACKGROUND
                        The background color to use for selected items in
                        listboxes (default: #4a6984)
  --listbox_selectforeground LISTBOX_SELECTFOREGROUND
                        The foreground color to use for selected items in
                        listboxes (default: #ffffff)

ENVI Viewer

usage: happy-envi-viewer [-h] [-s SCAN] [-f BLACK_REFERENCE]
                         [-w WHITE_REFERENCE] [-r INT] [-g INT] [-b INT]
                         [--autodetect_channels] [--keep_aspectratio]
                         [--check_scan_dimensions] [--export_to_scan_dir]
                         [--annotation_color HEXCOLOR]
                         [--predefined_labels LIST] [--redis_host HOST]
                         [--redis_port PORT] [--redis_pw PASSWORD]
                         [--redis_in CHANNEL] [--redis_out CHANNEL]
                         [--redis_connect] [--marker_size INT]
                         [--marker_color HEXCOLOR] [--min_obj_size INT]
                         [--black_ref_locator LOCATOR]
                         [--black_ref_method METHOD]
                         [--white_ref_locator LOCATOR]
                         [--white_ref_method METHOD]
                         [--preprocessing PIPELINE]
                         [--log_timestamp_format FORMAT] [--zoom PERCENT]
                         [--normalization PLUGIN]
                         [-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]

ENVI Hyperspectral Image Viewer. Offers contour detection using SAM (Segment-
Anything: https://github.com/waikato-datamining/pytorch/tree/master/segment-
anything)

optional arguments:
  -h, --help            show this help message and exit
  -s SCAN, --scan SCAN  Path to the scan file (ENVI format) (default: None)
  -f BLACK_REFERENCE, --black_reference BLACK_REFERENCE
                        Path to the black reference file (ENVI format)
                        (default: None)
  -w WHITE_REFERENCE, --white_reference WHITE_REFERENCE
                        Path to the white reference file (ENVI format)
                        (default: None)
  -r INT, --scale_r INT
                        the wave length to use for the red channel (default:
                        None)
  -g INT, --scale_g INT
                        the wave length to use for the green channel (default:
                        None)
  -b INT, --scale_b INT
                        the wave length to use for the blue channel (default:
                        None)
  --autodetect_channels
                        whether to determine the channels from the meta-data
                        (overrides the manually specified channels) (default:
                        None)
  --keep_aspectratio    whether to keep the aspect ratio (default: None)
  --check_scan_dimensions
                        whether to compare the dimensions of subsequently
                        loaded scans and output a warning if they differ
                        (default: None)
  --export_to_scan_dir  whether to export images to the scan directory rather
                        than the last one used (default: None)
  --annotation_color HEXCOLOR
                        the color to use for the annotations like contours
                        (hex color) (default: None)
  --predefined_labels LIST
                        the comma-separated list of labels to use (default:
                        None)
  --redis_host HOST     The Redis host to connect to (IP or hostname)
                        (default: None)
  --redis_port PORT     The port the Redis server is listening on (default:
                        None)
  --redis_pw PASSWORD   The password to use with the Redis server (default:
                        None)
  --redis_in CHANNEL    The channel that SAM is receiving images on (default:
                        None)
  --redis_out CHANNEL   The channel that SAM is broadcasting the detections on
                        (default: None)
  --redis_connect       whether to immediately connect to the Redis host
                        (default: None)
  --marker_size INT     The size in pixels for the SAM points (default: None)
  --marker_color HEXCOLOR
                        the color to use for the SAM points (hex color)
                        (default: None)
  --min_obj_size INT    The minimum size that SAM contours need to have (<= 0
                        for no minimum) (default: None)
  --black_ref_locator LOCATOR
                        the reference locator scheme to use for locating black
                        references, eg rl-manual (default: None)
  --black_ref_method METHOD
                        the black reference method to use for applying black
                        references, eg br-same-size (default: None)
  --white_ref_locator LOCATOR
                        the reference locator scheme to use for locating
                        whites references, eg rl-manual (default: None)
  --white_ref_method METHOD
                        the white reference method to use for applying white
                        references, eg wr-same-size (default: None)
  --preprocessing PIPELINE
                        the preprocessors to apply to the scan (default: None)
  --log_timestamp_format FORMAT
                        the format string for the logging timestamp, see: http
                        s://docs.python.org/3/library/datetime.html#strftime-
                        and-strptime-format-codes (default: [%H:%M:%S.%f])
  --zoom PERCENT        the initial zoom to use (%) or -1 for automatic fit
                        (default: -1)
  --normalization PLUGIN
                        the normalization plugin and its options to use
                        (default: norm-simple)
  -V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
                        The logging level to use. (default: WARN)

Raw checker

usage: happy-raw-checker [-h] [-d RAW_DIR] [-f {text,text-compact,csv,json}]

Raw data checker interface. For sanity checks of raw capture data.

optional arguments:
  -h, --help            show this help message and exit
  -d RAW_DIR, --raw_dir RAW_DIR
                        The initial directory (default: None)
  -f {text,text-compact,csv,json}, --output_format {text,text-compact,csv,json}
                        The output format to use in the text box. (default:
                        text)

Command-line tools

Generate image regions objects

usage: happy-generate-image-regions-objects [-h] -i INPUT_DIR -o OUTPUT_DIR

Generate datasets as numpy cubes, to be loaded into deep learning datasets.

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT_DIR, --input_dir INPUT_DIR
                        Path to source folder containing HDR files (default:
                        None)
  -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                        Path to output folder (default: None)

HDR Info

usage: happy-hdr-info [-h] -i INPUT_FILE [-f] [-o OUTPUT_FILE]

Load and print information about an HDR file.

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT_FILE, --input_file INPUT_FILE
                        Path to the HDR file (default: None)
  -f, --full            Whether to output all fields (default: False)
  -o OUTPUT_FILE, --output_file OUTPUT_FILE
                        Path to output file; prints to stdout if omitted
                        (default: None)

HSI to RGB

usage: happy-hsi2rgb [-h] -i INPUT_DIR [INPUT_DIR ...] [-r] [-e EXTENSION]
                     [--black_ref_locator LOCATOR] [--black_ref_method METHOD]
                     [--white_ref_locator LOCATOR] [--white_ref_method METHOD]
                     [-a] [--red INT] [--green INT] [--blue INT]
                     [-o OUTPUT_DIR] [--width INT] [--height INT] [-n]
                     [-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]

Fake RGB image generator for HSI files.

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT_DIR [INPUT_DIR ...], --input_dir INPUT_DIR [INPUT_DIR ...]
                        Path to the scan file (ENVI format) (default: None)
  -r, --recursive       whether to traverse the directories recursively
                        (default: False)
  -e EXTENSION, --extension EXTENSION
                        The file extension to look for (default: .hdr)
  --black_ref_locator LOCATOR
                        the reference locator scheme to use for locating black
                        references, eg rl-manual (default: None)
  --black_ref_method METHOD
                        the black reference method to use for applying black
                        references, eg br-same-size (default: None)
  --white_ref_locator LOCATOR
                        the reference locator scheme to use for locating
                        whites references, eg rl-manual (default: None)
  --white_ref_method METHOD
                        the white reference method to use for applying white
                        references, eg wr-same-size (default: None)
  -a, --autodetect_channels
                        whether to determine the channels from the meta-data
                        (overrides the manually specified channels) (default:
                        False)
  --red INT             the wave length to use for the red channel (0-based)
                        (default: 0)
  --green INT           the wave length to use for the green channel (0-based)
                        (default: 0)
  --blue INT            the wave length to use for the blue channel (0-based)
                        (default: 0)
  -o OUTPUT_DIR, --output_dir OUTPUT_DIR
                        The directory to store the fake RGB PNG images instead
                        of alongside the HSI images. (default: None)
  --width INT           the width to scale the images to (<= 0 uses image
                        dimension) (default: 0)
  --height INT          the height to scale the images to (<= 0 uses image
                        dimension) (default: 0)
  -n, --dry_run         whether to omit saving the PNG images (default: False)
  -V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
                        The logging level to use. (default: WARN)

Matlab file Info

usage: happy-mat-info [-h] -i INPUT_FILE [-o OUTPUT_FILE]

Load and display structs from a MATLAB file.

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT_FILE, --input_file INPUT_FILE
                        Path to the MATLAB file (default: None)
  -o OUTPUT_FILE, --output_file OUTPUT_FILE
                        Path to the output file; outputs to stdout if omitted
                        (default: None)

Annotations to HAPPy

usage: happy-ann2happy [-h] -i DIR [DIR ...]
                       [-c {pixels,polygons,pixels_then_polygons,polygons_then_pixels}]
                       [-r] [-o DIR] -f {flat,dir-tree,dir-tree-with-data} -l
                       LABELS [-N] [-u UNLABELLED]
                       [--black_ref_locator LOCATOR]
                       [--black_ref_method METHOD]
                       [--white_ref_locator LOCATOR]
                       [--white_ref_method METHOD] [--pattern_mask PATTERN]
                       [--pattern_labels PATTERN] [--pattern_png PATTERN]
                       [--pattern_opex PATTERN] [--pattern_envi PATTERN] [-I]
                       [-n] [--resume_from DIR]
                       [-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]

Turns annotations (PNG, OPEX JSON, ENVI pixel annotations) into Happy ENVI
format.

optional arguments:
  -h, --help            show this help message and exit
  -i DIR [DIR ...], --input_dir DIR [DIR ...]
                        Path to the PNG/OPEX/ENVI files (default: None)
  -c {pixels,polygons,pixels_then_polygons,polygons_then_pixels}, --conversion {pixels,polygons,pixels_then_polygons,polygons_then_pixels}
                        What annotations and in what order to apply
                        (subsequent overlays can overwrite annotations).
                        (default: pixels_then_polygons)
  -r, --recursive       whether to look for OPEX/ENVI files recursively
                        (default: False)
  -o DIR, --output_dir DIR
                        The directory to store the fake RGB PNG images instead
                        of alongside the HSI images. (default: None)
  -f {flat,dir-tree,dir-tree-with-data}, --output_format {flat,dir-tree,dir-tree-with-data}
                        Defines how to store the data in the output directory.
                        (default: dir-tree-with-data)
  -l LABELS, --labels LABELS
                        The comma-separated list of object labels to export
                        ('Background' is automatically added). (default: None)
  -N, --no_implicit_background
                        whether to require explicit annotations for the
                        background rather than assuming all un-annotated
                        pixels are background (default: False)
  -u UNLABELLED, --unlabelled UNLABELLED
                        The value to use for pixels that do not have an
                        explicit annotation (label values start after this
                        value) (default: 0)
  --black_ref_locator LOCATOR
                        the reference locator scheme to use for locating black
                        references, eg rl-manual; requires: dir-tree-with-data
                        (default: None)
  --black_ref_method METHOD
                        the black reference method to use for applying black
                        references, eg br-same-size; requires: dir-tree-with-
                        data (default: None)
  --white_ref_locator LOCATOR
                        the reference locator scheme to use for locating
                        whites references, eg rl-manual; requires: dir-tree-
                        with-data (default: None)
  --white_ref_method METHOD
                        the white reference method to use for applying white
                        references, eg wr-same-size; requires: dir-tree-with-
                        data (default: None)
  --pattern_mask PATTERN
                        the pattern to use for saving the mask ENVI file,
                        available placeholders: {SAMPLEID} (default: mask.hdr)
  --pattern_labels PATTERN
                        the pattern to use for saving the label map for the
                        mask ENVI file, available placeholders: {SAMPLEID}
                        (default: mask.json)
  --pattern_png PATTERN
                        the pattern to use for saving the mask PNG file,
                        available placeholders: {SAMPLEID} (default:
                        {SAMPLEID}.png)
  --pattern_opex PATTERN
                        the pattern to use for saving the OPEX JSON annotation
                        file, available placeholders: {SAMPLEID} (default:
                        {SAMPLEID}.json)
  --pattern_envi PATTERN
                        the pattern to use for saving the ENVI mask annotation
                        file, available placeholders: {SAMPLEID} (default:
                        MASK_{SAMPLEID}.hdr)
  -I, --include_input   whether to copy the PNG/JSON file across to the output
                        dir (default: False)
  -n, --dry_run         whether to omit generating any data or creating
                        directories (default: False)
  --resume_from DIR     The directory to restart the processing with (all
                        determined dirs preceding this one get skipped)
                        (default: None)
  -V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
                        The logging level to use. (default: WARN)

OPEX labels

usage: happy-opex-labels [-h] -i INPUT [-r]
                         [-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
                         {list-labels,update-labels,delete-labels} ...

Performs actions on OPEX JSON files that it locates.

positional arguments:
  {list-labels,update-labels,delete-labels}
                        sub-command help
    list-labels         Lists the labels in the located files
    update-labels       Updates the labels using the specified label mapping
    delete-labels       Deletes the specified labels

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT, --input INPUT
                        The dir with the OPEX JSON files (default: None)
  -r, --recursive       Whether to search the directory recursively (default:
                        False)
  -V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
                        The logging level to use. (default: WARN)

Plot pre-processors

usage: happy-plot-preproc [-h] -i INPUT_DIR [-f FROM_INDEX] [-t TO_INDEX]
                          [-P PREPROCESSORS] [-S PIXEL_SELECTORS]
                          [-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]

Plot set of pixels with various pre-processing setups.

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT_DIR, --input_dir INPUT_DIR
                        Folder containing HAPPy data files (default: None)
  -f FROM_INDEX, --from_index FROM_INDEX
                        The first wavelength index to include (0-based)
                        (default: 60)
  -t TO_INDEX, --to_index TO_INDEX
                        The last wavelength index to include (0-based)
                        (default: 189)
  -P PREPROCESSORS, --preprocessors PREPROCESSORS
                        The preprocessors to apply to the data separately; use
                        "multi-pp" if you need to combine multiple steps.
                        Either preprocessor command-line(s) or file with one
                        preprocessor command-line per line. (default: pass-
                        through multi-pp -p 'derivative -w 15 -d 0 snv'
                        derivative -w 15 -d 0 sni)
  -S PIXEL_SELECTORS, --pixel_selectors PIXEL_SELECTORS
                        The pixel selectors to use. Either pixel selector
                        command-line(s) or file with one pixel selector
                        command-line per line. (default: ps-simple -n 100 -b)
  -V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
                        The logging level to use. (default: WARN)

Process data

usage: happy-process-data reader [preprocessor(s)] writer [-h|--help|--help-all|--help-plugin NAME] 
       [-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]

Processes data using the specified pipeline.

readers: happy-reader, matlab-reader
preprocessors: crop, derivative, down-sample, extract-regions, multi-pp, pca, pad, pass-through, snv, sni, std-scaler, subtract, wavelength-subset
writers: happy-writer, matlab-writer, png-writer

optional arguments:
  -h, --help            show this help message and exit
  --help-all            show the help for all plugins and exit
  --help-plugin NAME    show the help for plugin NAME and exit
  -V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
                        The logging level to use. (default: WARN)

Raw check

usage: happy-raw-check [-h] -i INPUT [INPUT ...] [-r] [-o OUTPUT]
                       [-f {text,text-compact,csv,json}]
                       [-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]

Performs sanity checks on raw capture folders.

optional arguments:
  -h, --help            show this help message and exit
  -i INPUT [INPUT ...], --input INPUT [INPUT ...]
                        The dir(s) with the raw capture folders (default:
                        None)
  -r, --recursive       Whether to search the directory recursively (default:
                        False)
  -o OUTPUT, --output OUTPUT
                        The file to store the results in; uses stdout if
                        omitted (default: None)
  -f {text,text-compact,csv,json}, --output_format {text,text-compact,csv,json}
                        The format to use for the output (default: text)
  -V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
                        The logging level to use. (default: WARN)

Scikit Regression Build

usage: happy-scikit-regression-build [-h] -d HAPPY_DATA_BASE_DIR
                                     [-P PREPROCESSORS] [-S PIXEL_SELECTORS]
                                     [-m REGRESSION_METHOD]
                                     [-p REGRESSION_PARAMS] -t TARGET_VALUE -s
                                     HAPPY_SPLITTER_FILE -o OUTPUT_FOLDER
                                     [-r REPEAT_NUM]
                                     [-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]

Evaluate regression model on Happy Data using specified splits and pixel
selector.

optional arguments:
  -h, --help            show this help message and exit
  -d HAPPY_DATA_BASE_DIR, --happy_data_base_dir HAPPY_DATA_BASE_DIR
                        Directory containing the Happy Data files (default:
                        None)
  -P PREPROCESSORS, --preprocessors PREPROCESSORS
                        The preprocessors to apply to the data. Either
                        preprocessor command-line(s) or file with one
                        preprocessor command-line per line. (default:
                        wavelength-subset -f 60 -t 189 sni snv derivative -w
                        15 pad -W 128 -H 128 -v 0)
  -S PIXEL_SELECTORS, --pixel_selectors PIXEL_SELECTORS
                        The pixel selectors to use. Either pixel selector
                        command-line(s) or file with one pixel selector
                        command-line per line. (default: ps-simple -n 64)
  -m REGRESSION_METHOD, --regression_method REGRESSION_METHOD
                        Regression method name (e.g., linearregression,ridge,l
                        ars,plsregression,plsneighbourregression,lasso,elastic
                        net,decisiontreeregressor,randomforestregressor,svr or
                        full class name) (default: linearregression)
  -p REGRESSION_PARAMS, --regression_params REGRESSION_PARAMS
                        JSON string containing regression parameters (default:
                        {})
  -t TARGET_VALUE, --target_value TARGET_VALUE
                        Target value column name (default: None)
  -s HAPPY_SPLITTER_FILE, --happy_splitter_file HAPPY_SPLITTER_FILE
                        Happy Splitter file (default: None)
  -o OUTPUT_FOLDER, --output_folder OUTPUT_FOLDER
                        Output JSON file to store the predictions (default:
                        None)
  -r REPEAT_NUM, --repeat_num REPEAT_NUM
                        Repeat number (default: 0) (default: 0)
  -V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
                        The logging level to use. (default: WARN)

Scikit Segmentation Build

usage: happy-scikit-segmentation-build [-h] -d HAPPY_DATA_BASE_DIR
                                       [-P PREPROCESSORS] [-S PIXEL_SELECTORS]
                                       [-m SEGMENTATION_METHOD]
                                       [-p SEGMENTATION_PARAMS] -t
                                       TARGET_VALUE -s HAPPY_SPLITTER_FILE -o
                                       OUTPUT_FOLDER [-r REPEAT_NUM]
                                       [-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]

Evaluate segmentation model on Happy Data using specified splits and pixel
selector.

optional arguments:
  -h, --help            show this help message and exit
  -d HAPPY_DATA_BASE_DIR, --happy_data_base_dir HAPPY_DATA_BASE_DIR
                        Directory containing the Happy Data files (default:
                        None)
  -P PREPROCESSORS, --preprocessors PREPROCESSORS
                        The preprocessors to apply to the data (default: )
  -S PIXEL_SELECTORS, --pixel_selectors PIXEL_SELECTORS
                        The pixel selectors to use. (default: ps-simple -n
                        32767)
  -m SEGMENTATION_METHOD, --segmentation_method SEGMENTATION_METHOD
                        Segmentation method name (e.g., randomforestclassifier
                        ,gradientboostingclassifier,adaboostclassifier,kneighb
                        orsclassifier,decisiontreeclassifier,gaussiannb,logist
                        icregression,mlpclassifier,svm,random_forest,knn,decis
                        ion_tree,gradient_boosting,naive_bayes,logistic_regres
                        sion,neural_network,adaboost,extra_trees or full class
                        name) (default: svm)
  -p SEGMENTATION_PARAMS, --segmentation_params SEGMENTATION_PARAMS
                        JSON string containing segmentation parameters
                        (default: {})
  -t TARGET_VALUE, --target_value TARGET_VALUE
                        Target value column name (default: None)
  -s HAPPY_SPLITTER_FILE, --happy_splitter_file HAPPY_SPLITTER_FILE
                        Happy Splitter file (default: None)
  -o OUTPUT_FOLDER, --output_folder OUTPUT_FOLDER
                        Output JSON file to store the predictions (default:
                        None)
  -r REPEAT_NUM, --repeat_num REPEAT_NUM
                        Repeat number (default: 0) (default: 0)
  -V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
                        The logging level to use. (default: WARN)

Scikit Unsupervised Build

usage: happy-scikit-unsupervised-build [-h] -d DATA_FOLDER [-P PREPROCESSORS]
                                       [-S PIXEL_SELECTORS]
                                       [-m CLUSTERER_METHOD]
                                       [-p CLUSTERER_PARAMS] -s
                                       HAPPY_SPLITTER_FILE -o OUTPUT_FOLDER
                                       [-r REPEAT_NUM]
                                       [-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]

Evaluate clustering on hyperspectral data using specified clusterer and pixel
selector.

optional arguments:
  -h, --help            show this help message and exit
  -d DATA_FOLDER, --data_folder DATA_FOLDER
                        Directory containing the hyperspectral data (default:
                        None)
  -P PREPROCESSORS, --preprocessors PREPROCESSORS
                        The preprocessors to apply to the data. Either
                        preprocessor command-line(s) or file with one
                        preprocessor command-line per line. (default:
                        wavelength-subset -f 60 -t 189 snv derivative pca -n 5
                        -p 20)
  -S PIXEL_SELECTORS, --pixel_selectors PIXEL_SELECTORS
                        The pixel selectors to use. Either pixel selector
                        command-line(s) or file with one pixel selector
                        command-line per line. (default: ps-simple -n 32 -b)
  -m CLUSTERER_METHOD, --clusterer_method CLUSTERER_METHOD
                        Clusterer name (e.g.,
                        kmeans,agglomerative,spectral,dbscan,meanshift) or
                        full class name (default: kmeans)
  -p CLUSTERER_PARAMS, --clusterer_params CLUSTERER_PARAMS
                        JSON string containing clusterer parameters (default:
                        {})
  -s HAPPY_SPLITTER_FILE, --happy_splitter_file HAPPY_SPLITTER_FILE
                        Happy Splitter file (default: None)
  -o OUTPUT_FOLDER, --output_folder OUTPUT_FOLDER
                        Output JSON file to store the predictions (default:
                        None)
  -r REPEAT_NUM, --repeat_num REPEAT_NUM
                        Repeat number (default: 0) (default: 0)
  -V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
                        The logging level to use. (default: WARN)

Splitter

usage: happy-splitter [-h] -b BASE_FOLDER [-r NUM_REPEATS] [-f NUM_FOLDS]
                      [-t TRAIN_PERCENT] [-v VALIDATION_PERCENT] [-R]
                      [-H HOLDOUT_PERCENT] -o OUTPUT_FILE [-S SEED]

Generate train/validation/test splits for Happy data.

optional arguments:
  -h, --help            show this help message and exit
  -b BASE_FOLDER, --base_folder BASE_FOLDER
                        Path to the Happy base folder (default: None)
  -r NUM_REPEATS, --num_repeats NUM_REPEATS
                        Number of repeats (default: 1)
  -f NUM_FOLDS, --num_folds NUM_FOLDS
                        Number of folds (default: 1)
  -t TRAIN_PERCENT, --train_percent TRAIN_PERCENT
                        Percentage of data in the training set (default: 70.0)
  -v VALIDATION_PERCENT, --validation_percent VALIDATION_PERCENT
                        Percentage of data in the validation set (default:
                        10.0)
  -R, --use_regions     Use regions in generating splits (default: False)
  -H HOLDOUT_PERCENT, --holdout_percent HOLDOUT_PERCENT
                        Percentage of data to hold out as a holdout set
                        (default: None)
  -o OUTPUT_FILE, --output_file OUTPUT_FILE
                        Path to the output split file (default:
                        output_split.json)
  -S SEED, --seed SEED  The seed to use for reproducible results (default:
                        None)

Plugins

See here for a list of plugins and their documentation.