happy-tools that use the Keras library for Deep Learning on hyperspectral images.
pip install git+https://github.com/wairas/happy-tools.git
pip install git+https://github.com/wairas/happy-tools-keras.git
For Docker images, please see docker/README.md.
usage: happy-keras-pixel-regression-build [-h] -d DATA_FOLDER
[-P PREPROCESSORS] -t TARGET -s
HAPPY_SPLITTER_FILE -o OUTPUT_FOLDER
[-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
Evaluate a Keras-based pixel regression model.
optional arguments:
-h, --help show this help message and exit
-d DATA_FOLDER, --data_folder DATA_FOLDER
Path to the data folder (default: None)
-P PREPROCESSORS, --preprocessors PREPROCESSORS
The preprocessors to apply to the data. Either
preprocessor command-line(s) or file with one
preprocessor command-line per line. (default: crop -W
320 -H 648 wavelength-subset -f 60 -t 189 sni snv
derivative -w 15 -d 1 pad -W 320 -H 648 -v 0 down-
sample)
-t TARGET, --target TARGET
Name of the target variable (default: None)
-s HAPPY_SPLITTER_FILE, --happy_splitter_file HAPPY_SPLITTER_FILE
Path to JSON file containing splits (default: None)
-o OUTPUT_FOLDER, --output_folder OUTPUT_FOLDER
Path to the output folder (default: None)
-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
The logging level to use. (default: WARN)
usage: happy-keras-segmentation-build [-h] -d DATA_FOLDER [-P PREPROCESSORS]
-t TARGET -s HAPPY_SPLITTER_FILE -o
OUTPUT_FOLDER
[-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
Build a Keras-based pixel segmentation model.
optional arguments:
-h, --help show this help message and exit
-d DATA_FOLDER, --data_folder DATA_FOLDER
Path to the data folder (default: None)
-P PREPROCESSORS, --preprocessors PREPROCESSORS
The preprocessors to apply to the data. Either
preprocessor command-line(s) or file with one
preprocessor command-line per line. (default:
wavelength-subset -f 60 -t 189 sni snv derivative -w
15 -d 1 pad -W 128 -H 128 -v 0)
-t TARGET, --target TARGET
Name of the target variable (default: None)
-s HAPPY_SPLITTER_FILE, --happy_splitter_file HAPPY_SPLITTER_FILE
Path to JSON file containing splits (default: None)
-o OUTPUT_FOLDER, --output_folder OUTPUT_FOLDER
Path to the output folder (default: None)
-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
The logging level to use. (default: WARN)
usage: happy-keras-unsupervised-build [-h] -d DATA_FOLDER [-P PREPROCESSORS]
-t TARGET [-n NUM_CLUSTERS] -s
HAPPY_SPLITTER_FILE -o OUTPUT_FOLDER
[-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
Build a Keras-based unsupervised segmentation model.
optional arguments:
-h, --help show this help message and exit
-d DATA_FOLDER, --data_folder DATA_FOLDER
Path to the data folder (default: None)
-P PREPROCESSORS, --preprocessors PREPROCESSORS
The preprocessors to apply to the data. Either
preprocessor command-line(s) or file with one
preprocessor command-line per line. (default:
wavelength-subset -f 60 -t 189 snv derivative pad -W
128 -H 128 -v 0)
-t TARGET, --target TARGET
Name of the target variable (default: None)
-n NUM_CLUSTERS, --num_clusters NUM_CLUSTERS
The number of clusters to use (default: 4)
-s HAPPY_SPLITTER_FILE, --happy_splitter_file HAPPY_SPLITTER_FILE
Path to JSON file containing splits (default: None)
-o OUTPUT_FOLDER, --output_folder OUTPUT_FOLDER
Path to the output folder (default: None)
-V {DEBUG,INFO,WARNING,ERROR,CRITICAL}, --logging_level {DEBUG,INFO,WARNING,ERROR,CRITICAL}
The logging level to use. (default: WARN)