Customize Training with Detectron
sudo docker pull gouchicao/detectron:latest
└── helmet 工程目录
├── images 样本图片目录
├── helmet_train.json 训练的样本标注信息
├── helmet_val.json 验证的样本标注信息
├── test 测试图片目录
├── predict 预测图片目录
├── model 模型目录
└── e2e_mask_rcnn_R-101-FPN_2x.yaml 网络配置文件
sudo docker run -it --runtime=nvidia --name detectron-helmet -v /helmet-project-realpath:/detectron/project gouchicao/detectron:latest
nano /detectron/detectron/utils/env.py
yaml_load = lambda x: yaml.load(x, Loader=yaml.Loader)
- 配置数据集
nano /detectron/detectron/datasets/dataset_catalog.py
_DATASETS = {
'coco_helmet_train': {
_IM_DIR: '/detectron/project/images',
_ANN_FN: '/detectron/project/helmet_train.json'
},
'coco_helmet_val': {
_IM_DIR: '/detectron/project/images',
_ANN_FN: '/detectron/project/helmet_val.json'
},
......
}
- 修改网络配置文件
nano /detectron/project/12_2017_baselines/e2e_mask_rcnn_R-101-FPN_2x.yaml
MODEL:
TYPE: generalized_rcnn
CONV_BODY: FPN.add_fpn_ResNet101_conv5_body
NUM_CLASSES: 2
FASTER_RCNN: True
MASK_ON: True
NUM_GPUS: 1
SOLVER:
WEIGHT_DECAY: 0.0001
LR_POLICY: steps_with_decay
BASE_LR: 0.002
GAMMA: 0.1
MAX_ITER: 4000
STEPS: [0, 3000, 4000]
FPN:
FPN_ON: True
MULTILEVEL_ROIS: True
MULTILEVEL_RPN: True
FAST_RCNN:
ROI_BOX_HEAD: fast_rcnn_heads.add_roi_2mlp_head
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 7
ROI_XFORM_SAMPLING_RATIO: 2
MRCNN:
ROI_MASK_HEAD: mask_rcnn_heads.mask_rcnn_fcn_head_v1up4convs
RESOLUTION: 28 # (output mask resolution) default 14
ROI_XFORM_METHOD: RoIAlign
ROI_XFORM_RESOLUTION: 14 # default 7
ROI_XFORM_SAMPLING_RATIO: 2 # default 0
DILATION: 1 # default 2
CONV_INIT: MSRAFill # default GaussianFill
TRAIN:
WEIGHTS: https://dl.fbaipublicfiles.com/detectron/ImageNetPretrained/MSRA/R-101.pkl
DATASETS: ('coco_helmet_train', 'coco_helmet_val')
SCALES: (800,)
MAX_SIZE: 1333
BATCH_SIZE_PER_IM: 512
RPN_PRE_NMS_TOP_N: 2000 # Per FPN level
TEST:
DATASETS: ('coco_2014_minival',)
SCALE: 800
MAX_SIZE: 1333
NMS: 0.5
RPN_PRE_NMS_TOP_N: 1000 # Per FPN level
RPN_POST_NMS_TOP_N: 1000
OUTPUT_DIR: .
python /detectron/tools/train_net.py --cfg /detectron/project/e2e_mask_rcnn_R-101-FPN_2x.yaml OUTPUT_DIR /detectron/project/model
python /detectron/tools/infer_simple.py --cfg /detectron/project/e2e_mask_rcnn_R-101-FPN_2x.yaml --output-dir /detectron/project/predict --image-ext jpg --wts /detectron/project/model/train/coco_helmet_train\:coco_helmet_train/generalized_rcnn/model_final.pkl /detectron/project/test