/OPERA

Official implementation of "OPERA: Omni-Supervised Representation Learning with Hierarchical Supervisions"

Primary LanguagePython

OPERA: Omni-Supervised Representation Learning with Hierarchical Supervisions

This repository is the official implementation of "OPERA: Omni-Supervised Representation Learning with Hierarchical Supervisions".

Chengkun Wang*, Wenzhao Zheng*, Zheng Zhu, Jie Zhou, and Jiwen Lu

framework

Highlighs

  • A unified framework for fully supervised and self-supervised learning based on deep metric learning.
  • End-to-end trainable with improved performance on both CNNs and ViTs on various tasks.
  • A contrastive learning framework with comparable performance to MIM methods (e.g. MAE) on DeiT-B.

Updates

Under construction.

  • Pretraining code
  • Pretraining details
  • Pretrained models
  • Downstream tasks code

Results

Preparation

Dataset

ImageNet

  • Download from here

Organize ImageNet as follows:

- dataset
    |- train
    |   |- class1
    |   |   |- image1
    |   |   |- ...
    |   |- ...
    |- test
        |- class1
        |   |- image1
        |   |- ...
        |- ...

Requirements

  • Python3
  • PyTorch (> 1.0)
  • NumPy

Device

We conducted most of the experiments with 8 Nvidia RTX 3090 GPU cards.

Training Models

OPERA

To pretrain a ResNet50 on ImageNet-1K for 150 epochs using OPERA on 8 Nvidia RTX 3090 GPU cards, please run the command as follows:

python main_moco.py \
  --lr=.3 --epochs=150 -b 1024 \
  --moco-m-cos --crop-min=.2 \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

To pretrain a DeiT-Small (ViT-Small) on ImageNet-1K for 150 epochs using OPERA on 8 Nvidia RTX 3090 GPU cards, please run the command as follows:

python main_moco.py \
  -a vit_small --epochs=150 -b 1024 \
  --optimizer=adamw --lr=1.5e-4 --weight-decay=.1 \
  --epochs=300 --warmup-epochs=40 \
  --stop-grad-conv1 --moco-m-cos --moco-t=.2 \
  --dist-url 'tcp://localhost:10001' \
  --multiprocessing-distributed --world-size 1 --rank 0 \
  [your imagenet-folder with train and val folders]

More options

There are more options to train various models:

Args Options
-b 1024 / 2048 / 4096
--epochs 100/ 150 / 300
--arch resnet50 / vit_small / vit_base

Acknowledgments

Our code is based on MoCo-v3 in (https://github.com/facebookresearch/moco-v3).

Citation

If you find this project useful in your research, please cite:

@article{wang2022opera,
    title={OPERA: Omni-Supervised Representation Learning with Hierarchical Supervisions},
    author={Wang, Chengkun and Zheng, Wenzhao and Zhu, Zheng and Zhou, Jie and Lu, Jiwen},
    journal={arXiv preprint arXiv:2210.05557},
    year={2022}
}