/DSVC

Research Institute of Data Science and Vision Computing 机器学习与深度学习课程内容与作业

Primary LanguageJupyter Notebook

Research Institute of Data Science and Vision Computing

Introduction

Research Institute of Data Science and Vision Computing 机器学习与深度学习课程作业

Content

assignment1

  • 基础:Git、Python基础学习
  • 算法:k-NN
  • 作业:CIFAR-10 图像分类

assignment2

  • 算法:Linear Regression (线性回归)
  • 优化:梯度下降法
  • 作业:Boston House Price Predict

assignment3

  • 算法:Logistic Regression(对数几率回归),sigmoid 函数
  • 作业:MNIST 手写数字识别
  • Bonus:完成Softmax CIFAR-10图像分类,以及类比 Softmax与Logistic的关系。

assignment4

  • 算法:Decision Tree
  • 作业:Decision Tree

assignment5

  • SVM介绍 (参考书籍:周志华机器学习)
  • 算法:SVM Hinge Loss
  • 作业:CIFAR-10图像分类

assignment6

  • Neural Network介绍
  • forward pass 、 backpropagation介绍
  • 作业:two-layer Neural Network CIFAR-10图像分类

assignment7

  • Neural Network 模块化实现
  • batch normalization介绍
  • dropout介绍
  • 作业:改进 Neural Network 代码、Batch Normalization、Dropout 实现

assignment8

  • CNN 介绍
  • 概念:卷积, Pooling, Stride, Padding, Learning Rate, Momentum, Softmax, ReLU, BP, SGD, Cross-Entropy Loss。
  • 作业:CIFAR-10图像分类。

Teacher

教师 -
秦品乐
助教 -
武宽 沈文祥

Participating students

Reference & Acknowledgements

我们的课程作业内容主要参考到了以下相关课程,在此对以下相关内容的作者表示感谢。