/wbdc2021_21th

2021年微信大数据挑战赛第21名

Primary LanguagePython

2021**高校计算机大赛-微信大数据挑战赛Baseline

本次比赛基于脱敏和采样后的数据信息,对于给定的一定数量到访过微信视频号“热门推荐”的用户,根据这些用户在视频号内的历史n天的行为数据,通过算法在测试集上预测出这些用户对于不同视频内容的互动行为(包括点赞、点击头像、收藏、转发等)的发生概率。

本次比赛以多个行为预测结果的加权uAUC值进行评分。大赛官方网站:https://algo.weixin.qq.com/

1. 环境依赖

  • deepctr-torch==0.2.7
  • gensim==4.0.1
  • lightgbm==3.2.1
  • networkx==2.5.1
  • numba==0.53.1
  • numpy==1.19.2
  • pandas==1.1.0
  • scipy==1.5.3

2. 目录结构

./
├── README.md
├── requirements.txt, python package requirements 
├── init.sh, script for installing package requirements
├── train.sh, script for preparing train/inference data and training models, including pretrained models
├── inference.sh, script for inference 
├── src
│   ├── prepare, codes for preparing train/inference dataset
|       ├──fea.py  
|       ├──utils.py  
│   ├── model, codes for model architecture
|       ├──mmoe.py  
|   ├── train, codes for training
|       ├──train.py  
|       ├──utils.py 
|   ├── inference.py, main function for inference on test dataset
|   ├── evaluation.py, main function for evaluation 
├── data
│   ├── wedata, dataset of the competition
│       ├── wechat_algo_data1, preliminary dataset
│   ├── submission, prediction result after running inference.sh
│   ├── model, model files (e.g. tensorflow checkpoints)

3. 运行流程

  • 安装环境:sh init.sh (init.sh为空,直接使用envs里面的环境运行)
  • 进入目录:cd /home/tione/notebook/wbdc2021-semi
  • 数据准备和模型训练:sh train.sh
  • 预测并生成结果文件:sh inference.sh /home/tione/notebook/wbdc2021/data/wedata/wechat_algo_data2/test_b.csv

4. 模型及特征

  • 模型:MMOE
  • 参数:
    • batch_size: 20480
    • emded_dim: 48
    • num_epochs: 20
    • learning_rate: 0.001
  • 特征:
    • sparse特征:userid, feedid, device, authorid, bgm_song_id, bgm_singer_id, keyword1, tag1
    • dense特征:ctr特征、统计特征、embedding特征(word2vec, proNE图特征, 多模态降维特征)

5. 算法性能

  • 资源配置:2*P40_48G显存_14核CPU_112G内存
  • 预测耗时
    • 总预测时长: 1788 s
    • 单个目标行为2000条样本的平均预测时长: 121 ms

6. 代码说明

模型预测部分代码位置如下:

路径 行数 内容
src/inference.py 226 test_preds = predict(model, test_loader, device)

7. 相关文献

  • Ma J , Zhe Z , Yi X , et al. Modeling Task Relationships in Multi-task Learning with Multi-gate Mixture-of-Experts. ACM, 2018.