/PrivacyAmplification

Unified, Simplified, Tight and Fast Privacy Amplification in the Shuffle Model of Differential Privacy

Primary LanguagePython

Privacy Amplification via Shuffling

Unified, Simplified, Tight, and Fast Privacy Amplification in the Shuffle Model of Differential Privacy

Manuscript available at: https://arxiv.org/abs/2304.05007

✓ LDP randomizers, metric LDP randomizers, and some multi-message randomizers

✓ closed-form bounds and numerical bounds. The numerical bound takes 15 seconds for n=100,000,000. For better efficiency (but less tighter bound), use large tolerance (e.g., tol=\delta/n) or small number of iterations (e.g., T=8)

✓ tight parallel composition

✓ tight sequential composition

✓ compatible with subsampling

Usage

  • To compute tight privacy amplification upper bound, call:

    • amplificationUB(p, beta, q0, q1, n, delta, T)

    • for most local randomizers, q0=q1=q

  • To compute tight privacy amplification lower bound, call:

    • amplificationLB(p, beta, q0, q1, n, delta, T)
  • List of amplification parameters for LDP randomizers

randomizer parameter $p$ parameter $\beta$ parameter $q$
general mechanisms $e^{\epsilon}$ $\frac{e^{\epsilon}-1}{e^{\epsilon}+1}$ $e^{\epsilon}$
Laplace mechanism for $[0,1]$ \cite{dwork2006calibrating} $e^{\epsilon}$ $1-e^{-\epsilon/2}$ $e^{\epsilon}$
Duchi et al. \cite{duchi2013local} for $[-1,1]^d$ $e^{\epsilon}$ $\frac{e^{\epsilon}-1}{e^{\epsilon}+1}$ $e^{\epsilon}$
Harmony mechanism for $[-1,1]^d$ \cite{nguyen2016collecting} $e^{\epsilon}$ $\frac{e^{\epsilon}-1}{e^{\epsilon}+1}$ $e^{\epsilon}$
Piecewise mechanism for $[-1,1]$ \cite{wang2019collecting} $e^{\epsilon}$ $1-e^{-\epsilon/2}$ $e^{\epsilon}$
randomized response (RR) on ${0,1}$ \cite{warner1965randomized} $e^{\epsilon}$ $\frac{e^{\epsilon}-1}{e^{\epsilon}+1}$ $e^{\epsilon}$
general RR on $d$ options \cite{kairouz2016discrete} $e^{\epsilon}$ $\frac{e^{\epsilon}-1}{e^{\epsilon}+d-1}$ $e^{\epsilon}$
binary RR (RAPPOR) on $d$ options \cite{duchi2013local,erlingsson2014rappor} $e^{\epsilon}$ $\frac{e^{\epsilon/2}-1}{e^{\epsilon/2}+1}$ $e^{\epsilon}$
$k$-subset mechanism on $d$ options \cite{wang2019local,ye2018optimal} $e^{\epsilon}$ $\frac{(e^{\epsilon}-1)({d-1\choose k-1}-{d-2\choose k-2})}{e^{\epsilon}{d-1\choose k-1}+{d-1\choose k}}$ $e^{\epsilon}$
local hash with length $l$ \cite{wang2017locally} $e^{\epsilon}$ $\frac{e^{\epsilon}-1}{e^{\epsilon}+l-1}$ $e^{\epsilon}$
Hadamard response $(K,s)$ \cite{acharya2018hadamard} $e^{\epsilon}$ $\frac{s(e^{\epsilon}-1)/2}{s e^{\epsilon}+K-s}$ $e^{\epsilon}$
Hadamard response $(K,s,B>1)$ \cite{acharya2018hadamard} $e^{\epsilon}$ $\frac{s(e^{\epsilon}-1)}{s e^{\epsilon}+K-s}$ $e^{\epsilon}$
sampling RAPPOR on $s$ in $d$ options \cite{qin2016heavy} $e^{\epsilon}$ $\frac{s(e^{\epsilon/2}-1)}{d(e^{\epsilon/2}+1)}$ $e^{\epsilon}$
$k$-subset exponential on $s$ in $d$ options \cite{wang2018privset} $e^{\epsilon}$ $\frac{(e^{\epsilon}-1)({d-s\choose k}-{d-2s\choose k})}{e^{\epsilon}({d\choose k}-{d-s\choose k})+{d-s\choose k}}$ $e^{\epsilon}$
Wheel on $s$ in $d$ options with length $p$ \cite{wang2020set} $e^{\epsilon}$ $\frac{s p(e^{\epsilon}-1)}{ s p e^{\epsilon}+(1-s p)}$ $e^{\epsilon}$
PrivKV on $s$ in $d$ keys ($\epsilon_1+\epsilon_2=\epsilon$) \cite{Ye2019PrivKVKD} $e^{\epsilon}$ $\frac{2s\max{\frac{e^{\epsilon_1}(e^{\epsilon_2}-1)}{e^{\epsilon_2}+1}, e^{\epsilon_1}-1+\frac{e^{\epsilon_2}-1}{2(e^{\epsilon_2}+1)}}}{d(e^{\epsilon_1}+1)}$ $e^{\epsilon}$
PCKV-GRR on $s$ in $d$ keys \cite{gu2019pckv} $e^{\epsilon}$ $\frac{s(e^{\epsilon}-1)}{s e^{\epsilon}+2d-s}$ $e^{\epsilon}$
$(d,s)$-Collision with length $l$ \cite{wang2021hiding} $e^{\epsilon}$ $\frac{\min{s,l-s}(e^{\epsilon}-1)}{s e^{\epsilon}+l-s}$ $e^{\epsilon}$
  • List of amplification parameters for Local metric DP randomizers
randomizer parameter $p$ parameter $\beta$ parameter $q$
general mechanisms $e^{d_{01}}$ $\frac{e^{d_{01}}-1}{e^{d_{01}}+1}$ $e^{d_{max}}$
Laplace mechanism \cite{alvim2018local}, $\ell_1$-norm on $\mathbb{R}$ $e^{d_{01}}$ $1-e^{-d_{01}/2}$ $e^{d_{max}}$
planar Laplace \cite{andres2013geo}, $\ell_2$-norm on $\mathbb{R}^2$ $e^{d_{01}}$ $2\int_{0}^{\frac{d_{01}}{2}}\int_{-\infty}^{+\infty}\frac{e^{-\sqrt{(x-\frac{d_{01}}{2})^2+y^2}}}{2\pi}\mathrm{d} y \mathrm{d}x$ $e^{d_{max}}$
$(B,m,F)$-WitchHat \cite{wang2023SMDP}, $\ell_1$-norm on $\mathbb{R}$ $e^{d_{01}}$ $\frac{2(e^{m}-e^{{d_{01}}/{F}}+{d_{01}}/{F}-m)}{F(e^{m}-1)+2B}$ $e^{d_{max}}$
  • List of amplification parameters for multi-message local randomizers
randomizer parameter $p$ parameter $\beta$ parameter $q$
Balcer et al. \cite{balcer2020separating} with coin prob. $p$ for binary summation $+\infty$ $1$ $\max{\frac{1}{p},\frac{1}{1-p}}$
Balcer et al. \cite{balcer2021connecting} with uniform coin for binary summation $+\infty$ $1$ $2$
Cheu et al. \cite{cheu2022differentially} with flip prob. $f\in [0,0.5]$ on ${0,1}^d$ vectors $\frac{(1-f)^2}{f^2}$ $1-2f$ $\frac{1-f}{f}$
Balls-into-bins \cite{luo2022frequency,li2023privacy} with $d$ bins (and $s$ special bins) $+\infty$ $1$ $\frac{d}{s}$
mixDUMP \cite{li2023privacy} with flip prob. $f\in [0,\frac{d-1}{d}]$ on $d$ bins $\frac{(1-f)(d-1)}{f}$ $\frac{(1-f)(d-1)-f}{d-1}$ $(1-f)d$