/Log2Vec

A distributed representation method for online logs.

Primary LanguageRoff

Paper

Our paper is published on The 29th International Conference on Computer Communications and Networks (ICCCN 2020,). The information can be found here:

  • Weibin Meng, Ying Liu, Yuheng Huang, Shenglin Zhang, Federico Zaiter, Bingjin Chen, Dan Pei. A Semantic-aware Representation Framework for Online Log Analysis. ICCCN 2020. August 3 - August 6, 2020, Honolulu, Hawaii, USA.

Dependency

1. nltk, nltk.download("wordnet")
2. spacy, spacy.load("en_core_web_md")
3. progressbar
4. dynet (python3)

Quick Start

cd code/LRWE/src/ 
make clean
make 

# prepare the middle results 
python pipeline.py -i data/HDFS.log -t HDFS -o results/
  -i input rawlog
  -t name of logs
  -o output path

# do experiments for log2vec
python log2vec.py -i results -t HDFS
  -i input path
  -t name of logs

Directory Structure

.
|-- code
|   |-- get_syn_ant.py
|   |-- get_triplet.py
|   |-- getTempLogs.py
|   |-- Log2Vec.py
|   |-- utils.py
|   |-- kmeans.py
|   |-- LRWE/
|   |-- mimick/
|   |-- preprocessing.py
|
|-- log2vec.py
|-- pipeline.py
|-- statistics.py
|-- sample.py
|-- data
|   |-- HDFS.log #sample data

File Descriptions

preprocessing.py

#Filter variables in the logs
python code/preprocessing.py -rawlog ./data/BGL.log

  -rawlog:raw logs

Antonyms&Synonyms Extraction

#Extract antonyms and synonyms 
python code/get_syn_ant.py -logs ./data/BGL_without_variables.log -ant_file ./middle/ants.txt -syn_file ./middle/syns.txt

  -logs: logs
  -ant_file: antonyms
  -syn_file: synonyms

Relation Triple Extraction

python code/get_triplet.py data/BGL_without_variables.log middle/bgl_triplet.txt

  data/BGL_without_variables.log: logs
  middle/bgl_triples.txt: triples
#If -s is added, temporary saving will be enabled. By default, every 10000 pieces will be saved, named "temp\_" + output\_file
python code/get_triplet.py input_file output_file -s
#If another parameter is added after -s, the number of bars saved per time is modified
python code/get_triplet.py input_file output_file -s 50000 

Semantic Word Embedding

#Convert log file to single line for training
python code/getTempLogs.py -input data/BGL_without_variables.log -output middle/BGL_without_variables_for_training.log
cd code/LRWE/src/ 
make clean
make #make before you run

#The input file for training is the file obtained in the previous step
./lrcwe -train ../../middle/BGL_without_variables_for_training.log  -synonym ../../middle/syns.txt  -antonym ../../middle/ants.txt -output ../../middle/bgl_words.model -save-vocab ../../middle/bgl.vocab -belta-rel 0.8 - alpha-rel 0.01  -alpha-ant 0.3 -size 32 -min-count 1 -triplet ../../middle/bgl_triplet.txt

Handle OOV Words

#Read the original vector file
python code/mimick/make_dataset.py --vectors middle/bgl_words.model --w2v-format --output middle/bgl_words.pkl

  --vectors:Results of w2v, the first row is the number of rows and dimensions (can be omitted), the format of each subsequent row is word + word vector: word d1 d2... d32
#Train the new embedding according to oov
python code/mimick/model.py --dataset middle/bgl_words.pkl  --vocab middle/testvocab.txt --output middle/oov.vector

  --dataset:Output of the first step
  --vocab:New words, you can write multiple words in batches, one word per line
  --output:Embedding file for new words

Generate vector for logs

python code/Log2Vec.py -logs ./data/BGL_without_variables.log -word_model ./middle/bgl_words.model -log_vector_file ./middle/bgl_log.vector -dimension 32

This code was completed by @Weibin Meng, Yuheng Huang and Bingjin Chen in cooperation.