This repo contains the code of our paper:
HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation
Jiefeng Li, Chao Xu, Zhicun Chen, Siyuan Bian, Lixin Yang, Cewu Lu
[arXiv
]
[Project Page
]
In CVPR 2021
- Provide pretrained model
- Provide parsed data annotations
# 1. Create a conda virtual environment.
conda create -n hybrik python=3.6 -y
conda activate hybrik
# 2. Install PyTorch
conda install pytorch==1.1.0 torchvision==0.3.0
# 3. Pull our code
git clone https://github.com/Jeff-sjtu/HybrIK.git
cd HybrIK
# 4. Install
python setup.py develop
- Download the SMPL model
basicModel_neutral_lbs_10_207_0_v1.0.0.pkl
from here atcommon/utils/smplpytorch/smplpytorch/native/models
. - Download our pretrained model from [ Google Drive | Baidu ].
Download Human3.6M, MPI-INF-3DHP, 3DPW and MSCOCO datasets. You need to follow directory structure of the data
as below.
|-- data
`-- |-- h36m
`-- |-- annotations
`-- images
`-- |-- pw3d
`-- |-- json
`-- imageFiles
`-- |-- 3dhp
`-- |-- annotation_mpi_inf_3dhp_train.json
|-- annotation_mpi_inf_3dhp_test.json
|-- mpi_inf_3dhp_train_set
`-- mpi_inf_3dhp_test_set
`-- |-- coco
`-- |-- annotations
| |-- person_keypoints_train2017.json
| `-- person_keypoints_val2017.json
|-- train2017
`-- val2017
- Download Human3.6M parsed annotations. [ Google | Baidu ]
- Download 3DPW parsed annotations. [ Google | Baidu ]
- Download MPI-INF-3DHP parsed annotations. [ Google | Baidu ]
./scripts/train_smpl.sh train_res34 ./configs/256x192_adam_lr1e-3-res34_smpl_3d_base_2x_mix.yaml
Download the pretrained model [Google Drive].
./scripts/validate_smpl.sh ./configs/256x192_adam_lr1e-3-res34_smpl_24_3d_base_2x_mix.yaml ./pretrained_res34.pth
If our code helps your research, please consider citing the following paper:
@inproceedings{li2020hybrik,
title={HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation},
author={Li, Jiefeng and Xu, Chao and Chen, Zhicun and Bian, Siyuan and Yang, Lixin and Lu, Cewu},
booktitle={CVPR},
year={2021}
}