Unofficial implementation of: WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation, CVPR 2023 [Paper]
- Clone the repository to your local machine:
git clone https://github.com/wanweilin/WinCLIP.git
- Navigate to the project directory:
cd WinCLIP
pip install -r requirements.txt
python winclip_ac.py
Mvtec AD
- Implement segmentation part
Obj Type | AUROC | AUPR | F1-Max |
---|---|---|---|
bottle | 0.9833 | 0.9947 | 0.9593 |
cable | 0.8802 | 0.9222 | 0.8515 |
capsule | 0.6635 | 0.8956 | 0.9046 |
carpet | 0.9888 | 0.9968 | 0.9773 |
grid | 0.9879 | 0.9963 | 0.9825 |
hazelnut | 0.9305 | 0.9625 | 0.8921 |
leather | 1.0000 | 1.0000 | 1.0000 |
metal_nut | 0.9428 | 0.9871 | 0.9278 |
pill | 0.7908 | 0.9577 | 0.9156 |
screw | 0.6958 | 0.8677 | 0.8561 |
tile | 1.0000 | 1.0000 | 0.9941 |
toothbrush | 0.8431 | 0.9389 | 0.8889 |
transistor | 0.8946 | 0.8605 | 0.8193 |
wood | 0.9838 | 0.9949 | 0.9677 |
zipper | 0.8851 | 0.9667 | 0.9063 |
------------- | --------- | --------- | --------- |
Avg | 0.8980 | 0.9561 | 0.9229 |
If you find this code useful, please consider citing the original paper:
@InProceedings{Jeong_2023_CVPR,
author = {Jeong, Jongheon and Zou, Yang and Kim, Taewan and Zhang, Dongqing and Ravichandran, Avinash and Dabeer, Onkar},
title = {WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2023},
pages = {19606-19616}
}
This project borrows some code from OpenCLip and DRAEM, thanks for their admiring contributions!