/theconf

Python Package for Managing Configurations

Primary LanguagePythonMIT LicenseMIT

theconf

CodeFactor CircleCI

Python Package for Managing Configurations

python module 전역에서 쉽게 활용 가능한 global config util및 config를 쉽고 안전하게(실수를 예방하며) 활용가능한 Config전용 ArgumentParser확장 모듈

install

$ pip install git+https://github.com/wbaek/theconf.git

Config

Config는 main문에서 yaml 파일로 객체를 생성하고 어디서나 Config.get_instatnce()로 객체를 가져다 쓸 수 있다. (singleton pattern)

  • sample_config.yaml
value: string
foo:
    bar: text
    baz: 123
data:
    string: text
    int: 1
    float: 0.1
    list: [1, 2, 3]
    dict:
        key: value
>>> from theconf import Config
>>> _ = Config('sample_config.yaml')
>>> Config.get_instance()['value']
'string'
>>> Config.get_instance()['foo']
{'bar': 'text', 'baz': 123}
>>> Config.get_instance()['data']['float']
0.1
>>> _ = Config('sample_config.yaml')
Exception: This class is a singleton!

shorten

>>> from theconf import Config as C
>>> _ = C('sample_config.yaml')
>>> C.get()['value']
'string'

namedtuple

namedtuple are invalid if they are repeated or conflict with Python keywords.

>>> from theconf import Config as C
>>> _ = C('sample_config.yaml')
>>> C.get().value
'string'

extra infomations

  • git info

git 정보를 가져 올 수 있을때 config에 정보를 기본으로 가지고 있는다.

_git:
  branch: dev/implements
  commit:
    comment: 'fix some style

      '
    hash: 07564c36d2b3337597cbfebe0dbf1bf0f9a90bd0
  remote: https://github.com/wbaek/theconf.git
  status:
    diff:
    - path: README.md
      type: M
    untracked: []
  • version & timestamp

version정보는 dump할때마다 1씩 증가하며 timestamp는 Config객체가 생성 시점을 기록한다.

_timestamp: 2018/11/14 16:30:31
_version: 2

ConfigArgumentParser

Config에 있는 변수를 실행시점에 변경하거나 추가로 정의하고 싶을때 사용한다. 기존에 정의되어 있는 Config에 값을 overwrite하고 싶을때 --key value 형식으로 입력하면되고 기본적인 key의 존재여부 및 value의 type을 확인한다. ArgumentParser를 상속받아 구현하여 기본적으로 ArgumentParser와 사용법이 동일하다.

  • sample_config.py
from theconf import Config, ConfigArgumentParser
parser = ConfigArgumentParser(conflict_handler='resolve')
parser.add_argument('--added', type=str, default='NOT_EXIST_CONFIG', help='ADDED_FROM_ARGPARSER')
parser.add_argument('--dump', type=str, default=None, help='config dump filepath')
parsed_args = parser.parse_args()
print(parsed_args)
print(Config.get_instance())

if parsed_args.dump:
    Config.get_instance().dump(parsed_args.dump)
$ python sample_config.py -h
usage: sample_config.py -c CONFIG [CONFIG ...]
sample_config.py: error: the following arguments are required: -c/--config

$ python simple_config.py -c sample_config.yaml -h
usage: sample.py -c CONFIG [CONFIG ...] [-h] [--value VALUE] [--foo-bar FOO_BAR]
                 [--foo-baz FOO_BAZ] [--data-string DATA_STRING]
                 [--data-int DATA_INT] [--data-float DATA_FLOAT]
                 [--data-list [DATA_LIST [DATA_LIST ...]]]
                 [--data-dict-from DATA_DICT_FROM] [--added ADDED]
                 [--dump DUMP]

optional arguments:
  -c CONFIG [CONFIG ...], --config CONFIG [CONFIG ...]
                        set config filepath
  -h, --help            show this help message and exit
  --value VALUE         set str value (default:string)
  --foo-bar FOO_BAR     set str value (default:text)
  --foo-baz FOO_BAZ     set int value (default:123)
  --data-string DATA_STRING
                        set str value (default:text)
  --data-int DATA_INT   set int value (default:1)
  --data-float DATA_FLOAT
                        set float value (default:0.1)
  --data-list [DATA_LIST [DATA_LIST ...]]
                        set int list (default:[1, 2, 3])
  --data-dict-from DATA_DICT_FROM
                        set str value (default:to)
  --added ADDED         ADDED_FROM_ARGPARSER
  --dump DUMP           config dump filepath

$ python sample_config.py -c sample_config.yaml
Namespace(added='NOT_EXIST_CONFIG', config='sample_config.yaml', data_dict_from='to', data_float=0.1, data_int=1, data_list=[1, 2, 3], data_string='text', dump=None, foo_bar='text', foo_baz=123, value='string')
filename:sample_config.yaml
conf:{'value': 'string', 'foo': {'bar': 'text', 'baz': 123}, 'data': {'string': 'text', 'int': 1, 'float': 0.1, 'list': [1, 2, 3], 'dict': {'from': 'to'}}, 'config': 'sample_config.yaml', 'added': 'NOT_EXIST_CONFIG', 'dump': None}

$ python sample_config.py -c sample_config.yaml --data-float 10
Namespace(added='NOT_EXIST_CONFIG', config='sample_config.yaml', data_dict_from='to', data_float=10.0, data_int=1, data_list=[1, 2, 3], data_string='text', dump=None, foo_bar='text', foo_baz=123, value='string')
filename:sample_config.yaml
conf:{'value': 'string', 'foo': {'bar': 'text', 'baz': 123}, 'data': {'string': 'text', 'int': 1, 'float': 10.0, 'list': [1, 2, 3], 'dict': {'from': 'to'}}, 'config': 'sample_config.yaml', 'added': 'NOT_EXIST_CONFIG', 'dump': None}

$ python sample_config.py -c sample_config.yaml --data-float 10 --dump here.yaml
Namespace(added='NOT_EXIST_CONFIG', config='sample_config.yaml', data_dict_from='to', data_float=10.0, data_int=1, data_list=[1, 2, 3], data_string='text', dump='here.yaml', foo_bar='text', foo_baz=123, value='string')
filename:sample_config.yaml
conf:{'value': 'string', 'foo': {'bar': 'text', 'baz': 123}, 'data': {'string': 'text', 'int': 1, 'float': 10.0, 'list': [1, 2, 3], 'dict': {'from': 'to'}}, 'config': 'sample_config.yaml', 'added': 'NOT_EXIST_CONFIG', 'dump': 'here.yaml'}

$ cat here.yaml
added: NOT_EXIST_CONFIG
config: sample_config.yaml
data:
  dict: {from: to}
  float: 10.0
  int: 1
  list: [1, 2, 3]
  string: text
dump: here.yaml
foo: {bar: text, baz: 123}
value: string

$ python sample_config.py -c sample_config.yaml --not-exists
usage: sample_config.py -c CONFIG [CONFIG ...] [-h] [--value VALUE] [--foo-bar FOO_BAR]
                        [--foo-baz FOO_BAZ] [--data-string DATA_STRING]
                        [--data-int DATA_INT] [--data-float DATA_FLOAT]
                        [--data-list [DATA_LIST [DATA_LIST ...]]]
                        [--data-dict-from DATA_DICT_FROM] [--added ADDED]
                        [--dump DUMP]
sample_config.py: error: unrecognized arguments: --not-exists

Multiple Configs

Config파일을 여러개를 입력으로 받아 목적에 따라 나눠서 관리하고 합쳐서 사용한다. config파일에 동일한 key값이 존재하면 나중에 입력받은 config로 overwrite하고 key가 없다면 추가된다.

$ python sample.py -c config.yaml extra.yaml
Namespace(added='NOT_EXIST_CONFIG', config=['config.yaml', 'extra.yaml'], data_dict_from='to', data_float=0.1, data_float2=0.3, data_int=1, data_list=[1, 2, 3], data_string='new text', dump=None, foo_bar='text', foo_baz=123, value='string')
_timestamp: 2021/01/22 19:58:04
_version: 2
added: NOT_EXIST_CONFIG
config:
- config.yaml
- extra.yaml
data:
  dict:
    from: to
  float: 0.1
  float2: 0.3
  int: 1
  list:
  - 1
  - 2
  - 3
  string: new text
dump: null
foo:
  bar: text
  baz: 123
value: string

AverageMeter \w log for tensorboard & mlflow

import torch
import mlflow
from theconf import Config, ConfigArgumentParser, AverageMeter
parser = ConfigArgumentParser(conflict_handler='resolve')
parser.add_argument('--added', type=str, default='NOT_EXIST_CONFIG', help='ADDED_FROM_ARGPARSER')
parser.add_argument('--dump', type=str, default=None, help='config dump filepath')

# build model & dataloader

meter = AverageMeter('loss', tensorboard_path='./tensorboard', prefixs=['train', 'valid'])
with mlflow.start_run(run_name='test'):
    Config.get().mlflow_log_pararms() # log params
    for epoch in range(10):
        model.train()
        for inputs, targets in dataloader: 
            logit = model.forward(inputs)
            loss = criterion(logit, targets)
            meter.update('loss', loss)
        print(meter.get())
        meter.log('train', tensorboard=True, mlflow=True)
        meter.reset(step=epoch)
        
        model.eval()
        for inputs, targets in dataloader: 
            logit = model.forward(inputs)
            loss = criterion(logit, targets)
            meter.update('loss', loss)
        print(meter.get())
        meter.log('valid', tensorboard=True, mlflow=True)
        meter.reset(step=epoch)

        torch.save(model.state_dict(), 'last.pth.tar')
        mlflow.log_artifact('last.pth.tar', 'checkpoints')