Meta-Reinforcement Learning For Learning Domain Specific Embeddings While Utilizing Cross-Domain Knowledge
- Create conda environment
- pip install tensorboardx
- pip install pytorch-pretrained-bert
- cd to meta-learned-embeddings directory
- python bert_main.py
- Results will be in maml_output/few_shot directory
- To run tensorboard: tensorboard --logdir maml_output/few_shot/
- cd to meta-learned-embeddings directory
- python bert_data_preprocessing.py
- Zero-Shot:
- python pytorch-pretrained-BERT/examples/run_classifier_zero_shot.py --do_train --do_eval
- To run tensorboard: tensorboard --logdir bert_zero_shot_output/tb
- Few-Shot:
- python pytorch-pretrained-BERT/examples/run_classifier_few_shot.py --do_train --do_eval
- To run tensorboard: tensorboard --logdir bert_few_shot_output/tb
- Standard:
- python pytorch-pretrained-BERT/examples/run_classifier_standard.py --do_train --do_eval
- To run tensorboard: tensorboard --logdir bert_standard_output/tb
- Results will be in bert_zero_shot_output, bert_few_shot_output, and bert_standard_output folders